Numerische Mathematik

, Volume 41, Issue 1, pp 63–82 | Cite as

The numerical computation of the confluent hypergeometric functionU(a, b, z)

  • N. M. Temme
The Uniform Stability of Singularly Perturbed Discrete and Continuous Boundary Value Problems


An algorithm is given for the computation of the confluent hypergeometric functionU(a, b, z). For real values ofa, b andz, z>0, ALGOL 60 procedures are given. The computations are based on a Miller algorithm and on asymptotic expansions.

Subject Classifications

AMS(MOS): 65D20 CR: 5.12 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M.A., Stegun, I.A.: Handbook of mathematical functions. Nat. Bur. Stand. Appl. Math. Ser55, Washington D.C., 1964Google Scholar
  2. Campbell, J.C.: On Temme's algorithm for the modified Bessel function of third kind. ACM Trans. Math. Software6, 581–586 (1980)Google Scholar
  3. Gautschi, W.: Computational aspects of three-term recurrence relations. SIAM Rev.9, 24–82 (1967)Google Scholar
  4. Gautschi, W.: Evaluation of the repeated integrals of the coerror function. ACM Trans. Math. Software3, 240–252 (1977)Google Scholar
  5. Olver, F.W.J.: Numerical solution of second-order linear difference equations. J. Res. NBS 71B, Nos.2 and3, 111–129 (1967)Google Scholar
  6. Slater, L.J.: Confluent hypergeometric functions. Cambridge University Press, 1960Google Scholar
  7. Temme, N.M.: Numerical evaluation of functions arising from transformations of formal series. J. Math. Anal. Appl.51, 678–694 (1975a)Google Scholar
  8. Temme, N.M.: On the numerical evaluation of the modified Bessel function of the third kind. J. Comput. Phys.19, 324–337 (1975b)Google Scholar
  9. Temme, N.M.: On the expansion of confluent hypergeometric functions in terms of Bessel functions. J. Comput. Appl. Math.7, 27–32 (1979)Google Scholar
  10. Wimp, J.: On the computation of Tricomi's Ψ function. Computing13, 195–203 (1974)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • N. M. Temme
    • 1
  1. 1.Mathematisch CentrumAmsterdamThe Netherlands

Personalised recommendations