Numerische Mathematik

, Volume 62, Issue 1, pp 539–555 | Cite as

Estimating the matrixp-norm

  • Nicholas J. Higham


The Hölderp-norm of anm×n matrix has no explicit representation unlessp=1,2 or ∞. It is shown here that thep-norm can be estimated reliably inO(mn) operations. A generalization of the power method is used, with a starting vector determined by a technique with a condition estimation flavour. The algorithm nearly always computes ap-norm estimate correct to the specified accuracy, and the estimate is always within a factorn1−1/p of ‖A‖p. As a by-product, a new way is obtained to estimate the 2-norm of a rectangular matrix; this method is more general and produces better estimates in practice than a similar technique of Cline, Conn and Van Loan.

Mathematical Subject Classification (1991)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, E., Bai, Z., Bischof, C.H., Demmel, J.W., Dongarra, J., Du Croz, J.J., Greenbaum, A., Hammarling, S.J., McKenney, A., Ostrouchov, S., Sorensen, D.C. (1992): LAPACK Users' Guide, Society for Industrial and Applied Mathematics, Philadelphia (to appear)Google Scholar
  2. 2.
    Bartels, S.G. (1991): Two topics in matrix analysis: Structured sensitivity for Vandermondelike systems and a subgradient method for matrix norm estimation. M.Sc. Thesis, University of Dundee, ScotlandGoogle Scholar
  3. 3.
    Boyd, D.W. (1974): The power method forl p norms. Linear Algebra and Appl.9, 95–101Google Scholar
  4. 4.
    Cline, A.K. (1972): Rate of convergence of Lawson's algorithm. Math. Comput.26, 167–176Google Scholar
  5. 5.
    Cline, A.K., Conn, A.R., Van Loan, C.F. (1982): Generalizing the LINPACK condition estimator. In: J.P. Hennart, ed., Numerical Analysis, Mexico 1981. Lecture Notes in Mathematics 909. Springer, Berlin Heidelberg New York, pp. 73–83Google Scholar
  6. 6.
    Fletcher, R. (1987): Practical Methods of Optimization, 2nd Ed. Wiley, ChichesterGoogle Scholar
  7. 7.
    Fletcher, R., Grant, J.A., Hebden, M.D. (1971): The calculation of linear bestL p approximations, Comput. J.14, 276–279Google Scholar
  8. 8.
    Gastinel, N. (1970): Linear Numerical Analysis. Academic Press, LondonGoogle Scholar
  9. 9.
    Gilbert, J.R., Moler, C.B., Schreiber, R.S. (1992): Sparse matrices in MATLAB: Design and implementation. SIAM J. Matrix Anal. Appl.13, 333–356Google Scholar
  10. 10.
    Gillespie, T.A. (1991): Noncommutative variations on theorems of Marcel Riesz and others, In: J.H. Ewing, F.W. Gehring, eds., Paul Halmos: Celebrating 50 Years of Mathematics. Springer, Berlin Heidelberg New YorkGoogle Scholar
  11. 11.
    Goldberg, M., Straus, E.G. (1983): Multiplicativity ofl p norms for matrices. Linear Algebra Appl.52/53, 351–360Google Scholar
  12. 12.
    Golub G.H., Van Loan, C.F. (1989): Matrix Computations, 2nd Ed. Johns Hopkins University Press, Baltimore, MarylandGoogle Scholar
  13. 13.
    Hager, W.W. (1984): Condition estimates. SIAM J. Sci. Stat. Comput.5, 311–316CrossRefGoogle Scholar
  14. 14.
    Hardy, G.H., Littlewood, J.E., Pólya, G. (1952): Inequalities, 2nd Ed. Cambridge University Press, CambridgeGoogle Scholar
  15. 15.
    Higham, N.J. (1987): A survey of condition number estimation for triangular matrices. SIAM Rev.29, 575–596Google Scholar
  16. 16.
    Higham, N.J. (1988): FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation (Algorithm 674). ACM Trans. Math. Soft.14, 381–396Google Scholar
  17. 17.
    Higham, N.J. (1990): Experience with a matrix norm estimator. SIAM J Sci. Stat. Comput.11, 804–809Google Scholar
  18. 18.
    Higham, N.J. (1993): Optimization by direct search in matrix computations, Numerical Analysis Report No. 197, University of Manchester, England, January 1991; SIAM J. Matrix Anal. Appl. (to appear)Google Scholar
  19. 19.
    Higham, N.J. (1991): Algorithm 694: A collection of test matrices in Matlab, ACM Trans. Math. Soft.17, 289–305Google Scholar
  20. 20.
    Horn R.A., Johnson, C.R. (1985): Matrix Analysis. Cambridge University Press, CambridgeGoogle Scholar
  21. 21.
    Kato, T. (1976): Perturbation Theory for Linear Operators, 2nd Ed. Springer, Berlin Heidelberg New YorkGoogle Scholar
  22. 22.
    Li, Y. (1991): A globally convergent method forL p problems. Technical Report 91-1212. Department of Computer Science, Cornell University, Ithaca, NYGoogle Scholar
  23. 23.
    Merle, G., Späth, H. (1974): Computational experiences with discreteL p-approximation. Computing12, 315–321Google Scholar
  24. 24.
    Moler, C.B., Little, J.N., Bangert, S. (1989); 386-Matlab User's Guide. The Math Works, Inc., 24 Prime Parkway, Natick, MAGoogle Scholar
  25. 25.
    Osborne, M.R. (1985): Finite Algorithms in Optimization and Data Analysis. Wiley, ChichesterGoogle Scholar
  26. 26.
    Osborne, M.R., Watson, G.A. (1985): An analysis of the total approximation problem in separable norms, and an algorithm for the totall 1 problem. SIAM J. Sci. Stat. Comput.6, 410–424Google Scholar
  27. 27.
    Späth, H., Watson, G.A. (1987): On orthogonal linearl 1 approximation. Numer. Math.51, 531–543Google Scholar
  28. 28.
    Schneider, H., Strang, W.G. (1962): Comparison theorems for supremum norms. Numer. Math.4, 15–20Google Scholar
  29. 29.
    Pham Dinh Tao, (1984): Convergence of a subgradient method for computing the bound norm of matrices [in French]. Linear Algebra Appl.62, 163–182Google Scholar
  30. 30.
    Todd, J. (1977): Basic Numerical Mathematics, Vol. 2. Numerical Algebra. Birkhäuser, Basel; Academic Press, New YorkGoogle Scholar
  31. 31.
    Van Loan, C.F. (1987): On estimating the condition of eigenvalues and eigenvectors. Linear Algebra Appl.88/89, 715–732Google Scholar
  32. 32.
    Watson, G.A. (1980): Approximation Theory and Numerical Methods. Wiley, ChichesterGoogle Scholar
  33. 33.
    Watson, G.A. (1983): The total approximation problem. In C.K. Chui, L.L. Schumaker, J.D. Ward, eds., Approximation Theory IV. Academic Press, New York, pp. 723–728Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Nicholas J. Higham
    • 1
  1. 1.Nuffield Science Research Fellow, Department of MathematicsUniversity of ManchesterManchesterUK

Personalised recommendations