Advertisement

Numerische Mathematik

, Volume 62, Issue 1, pp 439–463 | Cite as

Locking effects in the finite element approximation of elasticity problems

  • Ivo Babuška
  • Manil Suri
Article

Summary

We consider the finite element approximation of the 2D elasticity problem when the Poisson ratiov is close to 0.5. It is well-known that the performance of certain commonly used finite elements deteriorates asv→0, a phenomenon calledlocking. We analyze this phenomenon and characterize the strength of the locking androbustness of varioush-version schemes using triangular and rectangular elements. We prove that thep-andh-p versions are free of locking with respect to the error in the energy norm. A generalization of our theory to the 3D problem is also discussed.

Mathematics Subject Classification (1991)

65N30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, D.N., Falk, R.S. (1987): Well-posedness of the fundamental boundary value problems for constrained anisotropic elastic materials. Arch. Ration. Mech. Anal.98, 143–165Google Scholar
  2. 2.
    Babuška, I., Suri, M. (1987): Theh-p version of the finite element method with quasiuniform meshes. RAIRO Math. Mod. Numer. Anal.21, 199–238Google Scholar
  3. 3.
    Babuška, I., Suri, M. (1987): The optimal convergence rate of thep-version of the finite element method. SIAM J. Numer. Anal.24, 750–776Google Scholar
  4. 4.
    Babuška, I., Suri, M. (1992): On locking and robustness in the finite element method. Tech. Rep. BN-1112, Institute for Physical Science and Technology, University of Maryland, College Park, May 1990. SIAM J. Numer. Anal. (to appear)Google Scholar
  5. 5.
    Suri, M. (1991): On the robustness of theh-andp-versions of the finite element method. J. Comput. Appl. Math.35, 303–310Google Scholar
  6. 6.
    de Boor, C. (1990): Private communicationGoogle Scholar
  7. 7.
    de Boor, C., DeVore, R. (1983): Approximation by smooth multivariate splines. Trans. Amer. Math. Soc.276, 775–788Google Scholar
  8. 8.
    de Boor, C., Höllig, K. (1983): Approximation order from bivariateC 1 cubics: a counterexample. Proc. Amer. Math. Soc.87, 649–655Google Scholar
  9. 9.
    de Boor, C., Höllig, K. (1988): Approximation power of smooth bivariatepp functions. Math. Z.197, 343–363Google Scholar
  10. 10.
    de Boor, C., Jia, R.Q. (1992): A sharp upper bound on the approximation order of smooth bivariatepp functions. J. Approximation Theory (to appear)Google Scholar
  11. 11.
    Brezzi, F., Fortin, M. (1991): Mixed and Hybrid Finite Element Methods. Springer, Berlin Heidelberg New YorkGoogle Scholar
  12. 12.
    Chui, C.K. (1988): Multivariate Splines. SIAM, PhiladelphiaGoogle Scholar
  13. 13.
    Ciarlet, P.G. (1978): The Finite Element Method for Elliptic Problems. North-Holland, AmsterdamGoogle Scholar
  14. 14.
    Fix, G., Strang, G. (1969): Fourier analysis of the finite element method in Ritz-Galerkin theory. Stud. Appl. Math.48, 265–273Google Scholar
  15. 15.
    Hughes, T.J. (1987): The Finite Element Method, Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  16. 16.
    Jensen, S. (1991): AnH 0m interpolation result. SIAM J. Math. Anal.22, 785–791Google Scholar
  17. 17.
    Muskhelishvili, N.I. (1963): Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen, The NetherlandsGoogle Scholar
  18. 18.
    Pinkus, A. (1985): n-widths in Approximation Theory. Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. 19.
    Scott, L.R., Vogelius, M. (1985): Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Math. Modeling Numer. Anal.19, 111–143Google Scholar
  20. 20.
    Scott, L.R., Vogelius, M. (1985): Conforming finite element methods for incompressible and nearly incompressible continua. In: Large Scale Computations in Fluid Mechanics. Lectures in Applied Mathematics, Vol. 22, Part 2, pp. 221–244. AMS, Providence, RIGoogle Scholar
  21. 21.
    Suri, M. (1990): Thep-version of the finite element method for elliptic equations of order2l, RAIRO Math: Modeling Num. Anal.24, 265–304Google Scholar
  22. 22.
    Sźabo, B.A., Babuška, I. (1991): Finite Element Analysis. Wiley, New YorkGoogle Scholar
  23. 23.
    Vogelius, M. (1983): An analysis of thep-version of the finite element method for nearly incompressible materials. Uniformly valid, optimal error estimates. Numer. Math.41, 19–37Google Scholar
  24. 24.
    Zenisek, A. (1973): Polynomial approximation on tetrahedrons in the finite element method. J. Approximation Theory7, 334–351Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Ivo Babuška
    • 1
  • Manil Suri
    • 2
  1. 1.Institute of Physical Science and TechnologyUniversity of MarylandCollege ParkUSA
  2. 2.Department of Mathematics and StatisticsUniversity of Maryland Baltimore CountyBaltimoreUSA

Personalised recommendations