Advertisement

Numerische Mathematik

, Volume 55, Issue 4, pp 401–430 | Cite as

Asymptotic expansions andL-error estimates for mixed finite element methods for second order elliptic problems

  • Junping Wang
Article

Summary

Asymptotic expansions for mixed finite element approximations of the second order elliptic problem are derived and Richardson extrapolation can be applied to increase the accuracy of the approximations. A new procedure, which is called the ‘error corrected method’, is presented as a further application of the asymptotic error expansion for the first order BDM approximation of the scalar field. The key point in deriving the asymptotic expansions for the error is an establishment ofL1-error estimates for mixed finite element approximations for the regularized Green's functions. As another application of theL1-error estimates for the regularized Green's functions, we shall present maximum norm error estimates for mixed finite element methods for second order elliptic problems.

Subject Classification

AMS(MOS) 65 N 30, 65 N 15 CR: G 1.8 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babuška, I.: The finite element method with Lagrangian multipliers. Numer. Math.20, 179–192 (1973)Google Scholar
  2. 2.
    Blum, H., Lin, Q., Rannacher, R.: Asymptotic error expansion and Richardson extrapolation for linear elements. Numer. Math.49, 11–37 (1986)Google Scholar
  3. 3.
    Brezzi, F.: On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO, Anal. Numér.2, 129–151 (1974)Google Scholar
  4. 4.
    Brezzi, F., Douglas Jr., J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math.47, 217–235 (1985)Google Scholar
  5. 5.
    Ciarlet, P.: The finite element method for elliptic problem. Amsterdam: North Holland 1978Google Scholar
  6. 6.
    Douglas Jr., J., Dupont, T., Wahlbin, L.B.: OptimalL error estimates for Galerkin approximations to solutions of two-point boundary value problems. Math. Comput29, 475–483 (1975)Google Scholar
  7. 7.
    Douglas Jr., J., Dupont, T., Wheeler, M.F.: AnL estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials. RAIRO, Anal. Numér.8, 61–66 (1974)Google Scholar
  8. 8.
    Douglas Jr., J., Roberts, J.E.: Global estimates for mixed finite element methods for second order elliptic equations. Math. Comput44, 39–52 (1985)Google Scholar
  9. 9.
    Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comput.34, 441–463 (1980)Google Scholar
  10. 10.
    Durán, R.: Error analysis inL p, 1≦p≦∞, for mixed finite element methods for linear and quasilinear elliptic problems. RAIRO, Anal. Numér22, 371–387 (1988)Google Scholar
  11. 11.
    Durán, R., Nochetto, R.H., Wang, J.: Sharp maximum norm error estimates for finite element approximations of the Stokes problem in 2-D. Math. Comput.51, 491–506 (1988)Google Scholar
  12. 12.
    Falk, R., Osborn, J.: Error estimates for mixed methods. RAIRO Anal. Numér.14, 249–277 (1980)Google Scholar
  13. 13.
    Fortin, M.: An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numér.11, 341–354 (1977)Google Scholar
  14. 14.
    Frehse, J., Rannacher, R.: EineL 1-Fehlerabschätzung für diskrete Grundlösungen in der Methode der finite Elemente. Bonn. Math. Schrift89, 92–114 (1976)Google Scholar
  15. 15.
    Gastaldi, L., Nochetto, R.H.: Sharp maximum norm error estimates for new families of mixed finite element methods (to appear)Google Scholar
  16. 16.
    Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations. New York: Springer 1986Google Scholar
  17. 17.
    Grisvard, P.: Elliptic problems in nonsmooth domains, London: Pitman Advanced Publishing Program, 1985Google Scholar
  18. 18.
    Lin, Q., Lu, T.: Asymptotic expansion for finite element approximation of elliptic problems on polygonal domains. Sixth Int. Conf. Comp. Math. Appl. Sci. Eng. (1983) VersaillesGoogle Scholar
  19. 19.
    Lin, Q., Wang, J.: Some expansions of the finite element approximation, Research Report IMS, 15 (1984), Chengdu Branch of Academia SinicaGoogle Scholar
  20. 20.
    Marchuk, G.I., Shaidurov, V.V.: Difference methods and their extrapolations, Berlin Heidelberg New York: Springer 1983Google Scholar
  21. 21.
    Nakata, M., Weiser, A., Wheeler, M.F.: Some superconvergence results for mixed finite element methods for elliptic problems on rectangular domains. In: Whiteman, J.R. (ed.) The mathematics of finite elements and applications V, pp. 59–81. London: Academic Press, 1985Google Scholar
  22. 22.
    Natterer, F.: Über die punktweise Konvergenz finiter Elemente. Numer. Math.25, 67–77 (1975)Google Scholar
  23. 23.
    Nitsche, J.A.:L -Convergence of finite element approximations, Mathematical Aspects of Finite Element methods. Lect. Notes Math.606, 261–274 (1977)Google Scholar
  24. 24.
    Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comput.38, 437–445 (1982)Google Scholar
  25. 25.
    Raviart, P.-A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of Finite Element Methods. Lect. Notes Math.606, 292–315 (1977)Google Scholar
  26. 26.
    Schatz, A.H., Wahlbin, L.B.: Interior maximum norm estimates for finite element methods. Math. Comput.31, 414–442 (1976)Google Scholar
  27. 27.
    Scholz, R.:L -convergence of saddle-point approximations for second order problems. RAIRO Anal. Numér.11, 209–216 (1977)Google Scholar
  28. 28.
    Scott, R.: OptimalL -estimates for the finite element method on irregular meshes. Math. Comput.30, 681–697 (1976)Google Scholar
  29. 29.
    Wheeler, M.F.: An optimalL error estimate for Galerkin approximations to solutions of two-point boundary value problems. SIAM J. Numer. Anal.10, 914–917 (1973)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Junping Wang
    • 1
  1. 1.Mathematical Sciences InstituteCornell UniversityIthacaUSA

Personalised recommendations