Advertisement

Numerische Mathematik

, Volume 26, Issue 3, pp 327–343 | Cite as

A modified continuation method for the numerical solution of nonlinear two-point boundary value problems by shooting techniques

  • P. Deuflhard
  • H. -J. Pesch
  • P. Rentrop
Article

Summary

A modification of the well-known continuation (or homotopy) method for actual computation is worked out. Compared with the classical method, the modification seems to be a more reliable device for supplying useful initial data for shooting techniques. It is shown that computing time may be significantly reduced in the numerical solution of sensitive realistic two-point boundary value problems.

Keywords

Initial Data Computing Time Mathematical Method Classical Method Actual Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avila, J. H.: The Feasibility of Continuation Methods for Nonlinear Equations. SIAM J. Numer. Anal.11, 102–120 (1974)Google Scholar
  2. 2.
    Bulirsch, R.: Numerical calculation of elliptic integrals and elliptic functions I, II. Numer. Math.7, 78–90, 353-354 (1965)Google Scholar
  3. 3.
    Bulirsch, R.: Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung. Vortrag im Lehrgang “Flugbahnoptimierung” der Carl-Cranz-Gesellschaft e.V., Okt. 1971Google Scholar
  4. 4.
    Bulirsch, R., Oettli, W., Stoer, J. (ed.): Conference Proceedings of Conference on Optimization and Optimal Control. Oberwolfach, Nov. 17–Nov. 23, 1974, Lecture Notes vol. 477, Springer 1975Google Scholar
  5. 5.
    Bulirsch, R., Stoer, J., Deuflhard, P.: Numerical solution of nonlinear two-point boundary value problems I. To be published in Numer. Math., Handbook Series ApproximationGoogle Scholar
  6. 6.
    Davidenko, D.: On a new method of numerically integrating a system of nonlinear equations. Dokl. Akad. Nauk SSSR88, 601–604 (1953)Google Scholar
  7. 7.
    Deuflhard, P.: A Modified Newton Method for the Solution of Ill-Conditioned Systems of Nonlinear Equations with Application to Multiple Shooting. Numer Math.22, 289–315 (1974)Google Scholar
  8. 8.
    Deuflhard, P.: A Relaxation Strategy for the Modified Newton Method. In [4], Bulirsch, R., Oettli, W., Stoer, J. (ed.): Conference Proceedings of Conference on Optimization and Optimal Control. Oberwolfach, Nov. 17–Nov. 23, 1974, Lecture Notes vol. 477, Springer 1975. p. 59–73Google Scholar
  9. 9.
    Deuflhard, P., Pesch, H.-J., Rentrop, P.: A Modified Continuation Method for the Numerical Solution of Nonlinear Two-Point Boundary Value Problems by Shooting Techniques. Technische Universität München, Rep. Nr. 7507 (1975)Google Scholar
  10. 10.
    Dickmanns, E. D.: Maximum Range Threedimensional Lifting Planetary Entry. NASA TR R-387 (1972)Google Scholar
  11. 11.
    Dickmanns, E. D., Pesch, H.-J.: Influence of a reradiative heating constraint on lifting entry trajectories for maximum lateral range. 11th International Symposium on Space Technology and Science, Tokyo, July 1975Google Scholar
  12. 12.
    Feilmeier, M.: Numerische Aspekte bei der Einbettung nichtlinearer Probleme. Computing9, 355–364 (1972)Google Scholar
  13. 13.
    Ficken, F. A.: The Continuation Method for Functional Equations. Comm. Pure Appl. Math.4, 435–456 (1951)Google Scholar
  14. 14.
    Holt, J. F.: Numerical Solution of Nonlinear Two-Point Boundary Problems by Finite Difference Methods. Comm. ACM7, 366–373 (1964)Google Scholar
  15. 15.
    Keller, H. B.: Numerical methods for two-point boundary value problems. London: Blaisdell 1968Google Scholar
  16. 16.
    Leder, D.: Automatische Schrittweitensteuerung bei global konvergenten Einbettungsmethoden. ZAMM54, 319–324 (1974)Google Scholar
  17. 17.
    Lahaye, E.: Une méthode de résolution d'une catégorie d'équations transcendentes. C. R. Acad. Sci. Paris198, 1840–1842 (1934)Google Scholar
  18. 18.
    Ortega, J. M., Rheinboldt, W. C.: Inerative Solution of Nonlinear Equations in Several Variables. New York: Academic Press 1970Google Scholar
  19. 19.
    Pesch, H.-J.: Numerische Berechnung optimaler Steuerungen mit Hilfe der Mehrzielmethode dokumentiert am Problem der Rückführung eines Raumgleiters unter Berücksichtigung von Aufheizungsbegrenzungen. Universität Köln: Diplomarbeit, 1973Google Scholar
  20. 20.
    Reissner, E.: On axisymmetrical deformations of thin shells of revolution. Proc. Symp. Appl. Math.3, 27–52 (1950)Google Scholar
  21. 21.
    Rentrop, P.: Numerische Lösung von singulären Randwertproblemen aus der Theorie der dünnen Schalen und der Supraleitung mit Hilfe der Mehrzielmethode. Universität Köln: Diplomarbeit, 1973Google Scholar
  22. 22.
    Rentrop, P.: Numerical Solution of the Singular Ginzburg-Landau Equations by Multiple Shooting. Computing16, 61–67 (1976)Google Scholar
  23. 23.
    Rheinboldt, W. C.: Local Mapping Relations and Global Implicit Function Theorems. Trans. Amer. Math. Soc.138, 183–198 (1969)Google Scholar
  24. 24.
    Roberts, S. M., Shipman, J. S.: Two-Point Boundary Value Problems: Shooting Methods. New York, London, Amsterdam: Elsevier 1972 (Chapter 7: Continuation)Google Scholar
  25. 25.
    Scott, M. R., Watts, H. A.: SUPORT — A Computer Code for Two-Point Boundary-Value Problems via Orthonormalization. Tech. Rep. Sandia Laboratories, Albuquerque, SAND 75-0198 (June 75)Google Scholar
  26. 26.
    Stoer, J., Bulirsch, R.: Einführung in die Numerische Mathematik II. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  27. 27.
    Troesch, B. A.: Intrinsic difficulties in the numerical solution of a boundary value problem. Space Tech. Labs., Tech. Note NN-142 (1960)Google Scholar
  28. 28.
    Wacker, H. J.: Nichtlineare Homotopien zur Konstruktion von Startlösungen für Iterationsverfahren. In Ansorge/Törnig (ed.): Numerische Lösung nichtlinearer partieller Differential- und Integrodifferentialgleichungen. Springer, Lecture Notes vol. 267, p. 51–67 (1972)Google Scholar
  29. 29.
    Weinitschke, H. J.: On the stability problem for shallow spherical shells. J. Math. Phys.38, 209–231 (1960)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • P. Deuflhard
    • 1
  • H. -J. Pesch
    • 1
  • P. Rentrop
    • 1
  1. 1.Institut f. MathematikTechn. Universität MünchenMünchen 2Germany

Personalised recommendations