Pediatric Radiology

, Volume 26, Issue 5, pp 324–328 | Cite as

Evaluation of glomerular function in individual kidneys using dynamic magnetic resonance imaging

  • Y. Fukuda
  • H. Watanabe
  • T. Tomita
  • H. Katayama
  • T. Miyano
  • K. Yabuta


We used the fast field-echo technique of magnetic resonance (MR) imaging with an intravenous bolus injection of paramagnetic contrast agent to evaluate glomerular function. The time-dependent curves of changes in signal intensity observed in the renal cortex and renal medulla brought about by the paramagnetic contrast agent allowed insight into excretory kinetics. The time at which the cortical and medullary curves cross, the cortico-medullary (C-M) junction time, was delayed with a decrease in glomerular function. The mean C-M junction time in both kidneys showed a significant inverse correlation with total creatinine clearance (Ccr), indicating the glomerular filtration rate. The C-M junction time in an individual kidney also showed an inverse correlation with individual Ccr in each kidney. Results suggest that dynamic MR imaging is a useful tool in evaluating renal morphology and in evaluating semi-quantitatively the glomerular function of the kidneys, singly and together, in a manner analogous to radionuclide scintigraphy.


Radionuclide Glomerular Filtration Rate Glomerular Filtration Inverse Correlation Renal Cortex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hricack H, Crooks L, Sheldon P, Kaufman L (1983) Nuclear magnetic resonance of the kidney. Radiology 146: 425–432PubMedGoogle Scholar
  2. 2.
    Thickman D, Kundel H, Biery D (1984) Magnetic resonance evaluation of hydronephrosis in dog. Radiology 152: 113–116PubMedGoogle Scholar
  3. 3.
    Terrier RF, Hricak H, Revel D, et al (1985) Magnetic resonance imaging in the diagnosis of acute renal allograft rejection and its differentiation from acute tubular necrosis: experimental study in the dog. Invest Radiol 20: 617–625PubMedGoogle Scholar
  4. 4.
    Yuasa Y, Kundel HL (1985) Magnetic resonance imaging following unilateral occlusion of the renal circulation in rabbits. Radiology 154: 151–156PubMedGoogle Scholar
  5. 5.
    Hircak H, Terrier F, Demas BE (1986) Renal allografts: evaluation by MR imaging. Radiology 159: 435–441PubMedGoogle Scholar
  6. 6.
    Carvlin MJ, Arger PH, Kundel HL, Axel L, Dougherty L, Kassab EA, Moore B (1987) Acute tubular necrosis: use of gadolinium-DTPA and fast imaging to evaluate renal function in the rabbit. J Comput Assist Tomogr 11: 488–495PubMedGoogle Scholar
  7. 7.
    Kikinis R, von Schulthess GK, Jager P, Durr R, Bino M, Kuoni W, Kubler O (1987) Normal and hydronephrotic kidney: evaluation of renal function with contrast-enhanced MR imaging. Radiology 165: 837–842PubMedGoogle Scholar
  8. 8.
    Carvlin MJ, Arger PH, Kundel HL, Axel L, Dougherty L, Kassab EA, Moore B (1989) Use of Gd-DTPA and fast-gradient-echo and spin-echo MR imaging to demonstrate renal function in the rabbit. Radiology 170: 705–711PubMedGoogle Scholar
  9. 9.
    von Schulthess GK, Kuoni W, Gerig G, Wuthrich R, Duewell S, Krestin G (1991) Semiautomated ROI analysis in dynamic MR studies. Part II: application to renal function examination. J Comput Assist Tomogr 15: 733–741PubMedGoogle Scholar
  10. 10.
    Takeda M, Katayama Y, Sato S, Odano I (1990) Value of dynamic magnetic resonance imaging in hydronephrosis. J Urol 143: 258AGoogle Scholar
  11. 11.
    Togami I, Murakami K, Tsunoda M, Kitagawa N, Sato N, Kimoto M (1991) Evaluation of renal function using dynamic MRI with Gd-DTPA — comparison with dynamic CT and renogram using 99mTc-DTPA on normal volunteer. Jpn J Med Imaging 10: 138–146Google Scholar
  12. 12.
    Felix R, Schorner M (1985) Brain tumors: MR imaging with gadolinium-DTPA. Radiology 156: 681–688PubMedGoogle Scholar
  13. 13.
    Ohtomo K, Itai Y, Yoshikawa K (1987) Hepatic tumors: dynamic MR imaging. Radiology 163: 27–31PubMedGoogle Scholar
  14. 14.
    Fuchs WA (1989) Renal morphology and function in magnetic resonance imaging. In: Margulis A (ed) Morphology and function in MRI. Springer, Berlin Heidelberg New York, pp 111–131Google Scholar
  15. 15.
    Mirowitz SA, Brown JJ, Joseph KT, Heiken JP (1991) Dynamic gadoliniumenhanced MR imaging of the spleen: normal enhancement patterns and evaluation of splenic lesions. Radiology 179: 681–686PubMedGoogle Scholar
  16. 16.
    Takeda M, Katayama Y, Tsutsui T, Komeyama T, Mizusawa T (1994) Does gadolinium-diethylenetriamine pentaacetic acid enhanced MRI of kidney represent tissue concentration of contrast media in the kidney? In vivo and in vitro study. Magn Reson Imaging 12: 421–427PubMedGoogle Scholar
  17. 17.
    Weinmann HJ, Brasch RC, Press WR, Wesbey GF (1989) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR 142: 619–624Google Scholar
  18. 18.
    Frank JA, Choyko PL, Austin HA, Girton ME (1991) Functional MR of the kidney. Magn Reson Med 22: 319–323PubMedGoogle Scholar
  19. 19.
    Krestin GP (1994) Magnetic resonance imaging of the kidneys: current status. Magn Reson Q 10: 2–21PubMedGoogle Scholar
  20. 20.
    Lorenz CH, Powers TA, Partain CL (1992) Quantitative imaging of renal blood flow and function. Invest Radiol 27: S109-S114PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Y. Fukuda
    • 1
  • H. Watanabe
    • 1
  • T. Tomita
    • 2
  • H. Katayama
    • 2
  • T. Miyano
    • 3
  • K. Yabuta
    • 1
  1. 1.Department of PediatricsJuntendo University School of MedicineBunkyo-ku, TokyoJapan
  2. 2.Department of RadiologyJuntendo University School of MedicineTokyoJapan
  3. 3.Department of Pediatric SurgeryJuntendo University School of MedicineTokyoJapan

Personalised recommendations