Archive for History of Exact Sciences

, Volume 25, Issue 4, pp 343–390 | Cite as

The development of the Laplace transform, 1737–1937

I. Euler to spitzer, 1737–1880
  • Michael A. B. Deakin
Article

Abstract

This paper, the first of two, follows the development of theLaplace Transform from its earliest beginnings withEuler, usually dated at 1737, to the year 1880, whenSpitzer was its major, if himself relatively minor, protagonist. The coverage aims at completeness, and shows the state which the technique reached in the hands of its greatest exponent to that time,Petzval. A sequel will trace the development of the modern theory from its beginnings withPoincaré to its present form, due toDoetsch.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abel,N. H., Sur les fonctions génératrices et leurs déterminantes. InOeuvres Complètes de N. H. Abel (Ed.B. Holmboe)Tome Second (Christiania: Grøndahl, 1839), 77–88. Also inOeuvres Complètes de Niels Henrik Abel (Ed.L. Sylow &S. Lie)Tome Second (Christiania: Grøndahl, 1881), 67–81.Google Scholar
  2. 2.
    Bessel,F. W., Über die Theorie der Zahlenfacultäten.Königsber. Archiv. f. Naturwiss. Math. 1 (1812), 241–270, 463. Also inAbhandlungen von Friedrich Wilhelm Bessel (Ed.R. Engelmann) (Leipzig: Engelmann, 1876)2, V, 342–352.Google Scholar
  3. 3.
    Boole,G., On a general method in analysis.Phil. Trans. 136 (1844), 225–282.Google Scholar
  4. 4.
    [G. Boole], On the integration of linear differential equations with constant coefficients.Cambridge Math. J. 1. Ser 2 (1840, 841), 114–119.Google Scholar
  5. 5.
    Boole,G.,A Treatise on Differential Equations (Cambridge: Macmillan, 1859; 2nd Edn.ibid. 1865; 2nd Edn. reprinted as 5th Edn. New York: Chelsea, n.d. [1959?]).Google Scholar
  6. 6.
    Boole,G.,A Treatise on the Calculus of Finite Differences (Cambridge: Macmillan, 1860). The relevant footnote does not appear in later editions.Google Scholar
  7. 7.
    Carslaw, H. S., &Jaeger, J. C.,Operational Methods in Applied Mathematics (Oxford University Press, 1941).Google Scholar
  8. 8.
    Cauchy,A.-L., Mémoire sur l'intégration des équations linéaires aux différences partielles et à coefficients constants.J. Éc. Polytech. 19 me cahier,Tome 12 (1823), 510–589. Also inOeuvres Complètes d'Augustin Cauchy (Paris: Gauthier-Villars, 1835–1974) (Hereinafter referred to asO.C.)2 ser. 1, 275–357.Google Scholar
  9. 9.
    Cauchy, A.-L.,Sur l'analogie des puissances et des différences (1st version) (1825),O.C. 2 ser.15, 25–40.Google Scholar
  10. 10.
    Cauchy,A.-L., Sur la transformation des fonctions d'une seule variable en intégrales doubles.Exercises de mathématiques (Paris: de Bure, 1826–1830)2 (1827), 112–124. O.C. 2 ser.7, 146–159.Google Scholar
  11. 11.
    Cauchy,A.-L., Sur la transformation des fonctions de plusieurs variables en intégrales multiples.Ex. de. math. 2 (1827), 157–158.O.C. 2 ser. 7, 195–197.Google Scholar
  12. 12.
    Cauchy,A.-L., Sur l'analogie des puissances et des différences (2nd version).Ex. de. math. 2 (1827), 159–192.O.C. 2 ser. 7, 198–235.Google Scholar
  13. 13.
    Cauchy,A.-L., Addition à l'article précedent.Ex. de. math. 2 (1827), 193–209.O.C. 2 ser. 7 236–254.Google Scholar
  14. 14.
    Cauchy,A.-L., Sur la transformation des fonctions qui répresentent les intégrales générales des équations différentielles linéairers.Ex. de. math. 2 (1827), 210–220.O.C. 2 ser. 7, 255–266.Google Scholar
  15. 15.
    Cauchy,A.-L., Mémoire sur la transformation et la reduction des intégrales générales d'un système d'équations linéaires aux différences partielles.Exercises d'analyse et de physique mathématique (Paris: Bachelier, 1840–1847)1 (1845), 178–211.O.C. 2 ser. 11, 227–264.Google Scholar
  16. 16.
    Cross, J. J., An informal history of Green's theorem and associated ideas, Part IV. University of Melbourne, School of Mathematical Sciences, Research Report No. 54 (1976).Google Scholar
  17. 17.
    Deakin,M. A. B., Euler's version of the Laplace Transform.Am. Math. Monthly 87 (1980), 264–269.Google Scholar
  18. 18.
    Doetsch,G.,Theorie und Anwendung der Laplace-Transformation (Berlin: Springer, 1937; Reprinted New York: Dover, 1943).Google Scholar
  19. 19.
    Erdélyi,A. (Ed.),Tables of Integral Transforms Vols. 1, 2 (Based, in part, on notes left byHarry Bateman) (New York: McGraw-Hill, 1954).Google Scholar
  20. 20.
    Euler,L., De constructione aequationum.Comm. Acad. Scient. Petrop. 9 (1737, 1744), 85–97. Also inLeonhardi Euleri Opera Omnia (Leipzig and Berlin: Teubner, 1911- ) (hereinafter referred to asO.O.) 1 ser.22, 150–161.Google Scholar
  21. 21.
    Euler,L., Methodus aequationes differentiales altiorum graduum integrandi ulterius promota.Novi Comm. Acad. Scient. Petrop,3 (1750/1, 1753), 3–35.O.O 1 ser. 22, 181–213.Google Scholar
  22. 22.
    Euler,L., Supplément aux recherches sur la propagation du son.Hist. Acad. Roy. Sci. Belles-Lettres (Berlin)15 (1759, 1766), 210–240.O.O. 3 ser. 1, 452–483.Google Scholar
  23. 23.
    Euler,L., Constructio aequationis differentio-differentialisAy du 2 + (B +Cu)du dy + (D +Eu +Fuu)ddy = 0 sumot elementodu constante.Novi Comm. Acad. Scient. Petrop. 8 (1760/1, 1763), 150–156.O.O. 1 ser. 22, 395–402.Google Scholar
  24. 24.
    Euler,L.,Institutiones Calculi Integralis Volumen Primum (St. Petersburg: Imperial Academy of Sciences, 1768).O.O. 1 ser. 11.Google Scholar
  25. 25.
    Euler, L.,Institutiones Calculi Integralis Volumen Secundum (St. Petersburg Imperial Academy of Sciences, 1769).O.O. 1 ser. 12.Google Scholar
  26. 26.
    Euler,L., De valoribus integralium a termino variabilisx = 0 usque adx = ∞ extensorum.Inst. Calc. Int. 4 (1794, MS date 1781), 337–345.O.O. 1 ser. 19, 217–227.Google Scholar
  27. 27.
    Euler,L., Integratio generalis aequationum differentialium linearium cujuscunque gradus et quotconque variabiles involventium.Mem. Acad. Imp. Sci. St. Pétersbourg 4 (1811, 1813; paper 1st delivered 1779), 43–51.O.O. 1 ser. 23, 407–413.Google Scholar
  28. 28.
    Fourier, J. B.,The Analytical Theory of Heat (English translation ofThéorie analytique de la chaleur, 1822) (Cambridge University Press, 1878; Reprinted New York, Dover, 1955). For a full bibliography ofFourier's contributions, see Ref. [30].Google Scholar
  29. 29.
    Freudenthal,H., Article onCauchy inDictionary of Scientific Biography, Vol. III. (Ed.C. C. Gillespie et al.) (New York: Scribner, 1971), 131–148. (see esp. pp. 14372-145.)Google Scholar
  30. 30.
    Grattan-Guinness,I.,Joseph Fourier: 1768–1830 (Cambridge, Mass.: M.I.T. Press, 1972) (in collaboration withJ. R. Ravetz).Google Scholar
  31. 31.
    Grattan-Guinness,I., The Laplace Transform, Part V of the article onLaplace inDictionary of Scientific Biography, Vol. XV (Supp. I). (Ed.C. C. Gillespie et al.) (New York: Scribner, 1978), 382–387.Google Scholar
  32. 32.
    DGF [Gregory, D. F.], On the residual calculus.Camb. Math. J. ser.1 (1838, 1839), 145–155.Google Scholar
  33. 33.
    Grunert,J. A., Über die höheren Differentiale der Function\(z = \frac{x}{{x^2 + y^2 }}\) und über die Entwickelung einiger bestimmten Integrale.J. reine ang. Math. (Crelle)8 (1832), 146–152.Google Scholar
  34. 34.
    Hadamard,J., Sur les séries de Dirichlet.Rend. Circ. Mat. Palermo 35 (1908), 326–330. Corrigendum.Ibid. 395–396.Google Scholar
  35. 35.
    Ince,E. L.,Ordinary Differential Equations (London: Longmans, 1927; Reprinted New York: Dover 1965).Google Scholar
  36. 36.
    Jacobi,C. G. J., Bemerkung zu der Abhandlung des Hrn. Prof. Scherk: über die Integration der Gleichung\(\frac{{\partial ^n y}}{{\partial x^n }} = \left( {\alpha + \beta x} \right)y\) J. reine ang. Math. (Crelle)10 (1833), 279. Also inC. G. J. Jacobi's Gesammelte Werke Bd. IV (Ed.K. Weierstrass) (Berlin: Reimer, 1866), 31–34.Google Scholar
  37. 37.
    Koppelmann,E., The calculus of operations and the rise of abstract algebra.Arch. Hist. Exact Sci. 8 (1972), 155–242.CrossRefGoogle Scholar
  38. 38.
    Kronecker, L., Notiz über Potenzenreihen.Monatsber. K. Preuss. Akad. Wiss. Berlin (1878, 1879), 53–58. Also inLeopold Kronecker's Werke 5 (Ed.K. Hensel) (Leipzig: Teubner, 1930; Reprinted New York: Chelsea, 1968), 197–201.Google Scholar
  39. 39.
    Kummer,E. E., Sur l'intégration générale de l'équation de Riccati par les intégrales définies.J. reine ang. Math. (Crelle)12 (1834), 144–147. Also inCollected Papers 2 (Ed.A. Weil) (Berlin: Springer, 1975), 42–45.Google Scholar
  40. 40.
    Lacroix,S. F.,Traité des Différences et des Séries (Faisant suite au Traité du Calcul et du Calcul intégral) (Paris: Duprat, 1800).Google Scholar
  41. 41.
    Lacroix,S. F.,Traité du calcul différentiel et du calcul intégral, 2 nde Edition, Tome 3 me contenant un traité des différences et des séries (Paris: Courcier, 1819).Google Scholar
  42. 42.
    Lagrange,J. L., Recherches sur la nature, et la propagation du son.Miscel. Taur. 1 (3) (1759) I-X and 1–112. Also inOeuvres (Ed.J.-A. Serret) (Paris: Gauthier-Villars, 1867–1882) (Hereinafter referred to asO)1, 37–148.Google Scholar
  43. 43.
    Lagrange,J. L., Nouvelles recherches sur la nature et le propagation du son.Miscel. Taur. 2 (2) (1760–1761, 1762), 1–172.O. 1, 149–316.Google Scholar
  44. 44.
    Lagrange,J. L., Mémoire sur l'utilité de la méthode de prendre le milieux entre les resultats de plusieurs observations, etc.Miscel. Taur. 5 (2) (1770–1773, n.d. [1776]), 123–166.O. 2, 171–234.Google Scholar
  45. 45.
    Landau,E.,Handbuch der Lehre von der Verteilung der Primzahlen, Bd.1, 2 (Leipzig and Berlin): Teubner, 1909.Google Scholar
  46. 46.
    Laplace, P. S., Mémoire sur les suites.Mem. Acad. roy. Sci. (Paris) (1779, 1782), 207–309. Also inOeuvres Complètes de Laplace (Paris: Gauthier-Villars, 1887–1912) (hereinafter referred to asO.C.)10, 1–89.Google Scholar
  47. 47.
    Laplace, P. S., Mémoire sur les approximations des formules qui sont fonctions de très grands nombres.Mem. Acad. roy. Sci. (Paris) (1782, 1785), 1–88.O.C. 10, 209–291.Google Scholar
  48. 48.
    Laplace,P. S., Mémoire sur les intégrales définies et leur application aux probabilités.Mem. Acad. Sci. (Paris)1 ser. 9 (1810–1811), 1–55.O.C. 10, 357–412.Google Scholar
  49. 49.
    Laplace,P. S.,Théorie analytique des probabilités (Paris: Acad. Sci., 1812). 3rd Edn. (1820) reprinted (1886) asO.C. 7. Pagination given here refers to theOuevres Complètes.Google Scholar
  50. 50.
    Lerch, M., O halvní vêtê theorie funkcí vytvořujících.Rozpravy Ceské Akad. C. Frant. Josefa 2 ser. 1 (1892), 679–685. Also paginated asČíslo 33, 1–7.Google Scholar
  51. 51.
    Liouville,J., Mémoire sur quelques questions de géometrie et de mêchanique, et sur un nouveau genre de calcul pour résoudre ces questions.J. Éc. Polytech. 13 (21me cahier) (1832), 1–69.Google Scholar
  52. 52.
    Liouville,J., Mémoire sur le calcul des différentielles à indices quelconques., 71–162.Google Scholar
  53. 53.
    Liouville,J., Mémoire sur l'intégration de l'équation\(\left( {mx^2 + nx + p} \right)\frac{{d^2 y}}{{dx^2 }} + \left( {qx + r} \right)\frac{{dy}}{{dx}} + sy = 0\) à l'aide des différentielles à indices quelconques., 163–186.Google Scholar
  54. 54.
    Liouville,J., Mémoire sur le développement des fonctions ou parties de fonctions en séries de sinus et de cosinus.J. Math. pures appls. (Liouville)1 ser. 1 (1936), 14–32.Google Scholar
  55. 55.
    Liouville,J., Troisième mémoire sur le développement des fonctions ou parties de fonctions en séries dont les divers terms sont assujétis à satisfaire à une même équation différentielle du second ordre, contenant un paramètre variable.J. Math. pures appls. (Liouville)1 ser. 2 (1837), 418–436.Google Scholar
  56. 56.
    Lobatto,R., Note sur les différentielles partielles de la fonction\(\frac{x}{{x^2 + y^2 }}\) J. reine ang. Math. (Crelle)11 (1834), 169–172.Google Scholar
  57. 57.
    Lobatto,R., Sur l'intégration des équations\(\frac{{d^n y}}{{d^x n}} - xy = 0,\frac{{d^2 y}}{{d^x 2}} + abx^n y = 0\) par des intégrales définies.J. reine ang. Math. (Crelle)17 (1837), 363–371.Google Scholar
  58. 58.
    Lützen, J.,The Prehistory of the Theory of Distributions. (L. Sc. Dissertation) (Aarhus Universitet, 1979).Google Scholar
  59. 59.
    McLachlan, N. W.,Complex Variable Theory and Transform Calculus (Cambridge University Press, 1939).Google Scholar
  60. 60.
    Mellin, H. J., Über gewisse durch bestimmte Integrale vermittelte Beziehung zwischen linearen Differentialgleichungen mit rationalen Coefficienten.Acta Soc. Sc. Fenn. 21 (1896), No. 6 (57 pp.).Google Scholar
  61. 61.
    Murnaghan,F. D., The Cauchy-Heaviside expansion formula and th Boltzmann-Hopkinson principle of superposition.Bull. Am. Math. Soc. 33 (1927), 81–89.Google Scholar
  62. 62.
    Murphy,R., On the inverse method of definite integrals with physical applications.Trans. Camb. Phil. Soc. 4 (1832, 1833), 353–408.Google Scholar
  63. 63.
    Murphy,R., Second memoir on the inverse method of definite integrals.Trans. Camb. Phil. Soc. 5 (1833, 1835), 113–148.Google Scholar
  64. 64.
    (Petrova,S. S.), (Early History of the Laplace Transform) (Istor-Mat. Issled.)20 (1975), 246–256.Google Scholar
  65. 65.
    Petzval,J., Integration der Differential-Gleichungen von linearer Form.Naturwissenschaftliche Abhandlungen (Haidinger)1 (1847), 177–256.Google Scholar
  66. 66.
    Petzval,J., Ueber die Theorie des Grössten und Kleinsten.Naturwiss. Abh. (Haidinger)2 (1848), 111–136.Google Scholar
  67. 67.
    Petzval,J.,Integration der linearen Differentialgleichungen mit constanten und veränderlichen Coefficienten, Erster Band (Vienna: Braumiller, 1853).Google Scholar
  68. 68.
    Petzval,J., Über Herrn Spitzer's Abhandlung: Die Integration mehrerer Differential-Gleichungen, und die darin erhobenen Prioritäts-Ansprüche.Sitzungsb. Math.-Naturwiss. Classe K. Akad. Wiss. (Wien)28 (1858), 253–268.Google Scholar
  69. 69.
    Petzval,J.,Integration der linearen Differentialgleichungen mit constanten und veränderlichen Coefficienten, Zweiter Band (Vienna: Braumiller, 1859).Google Scholar
  70. 70.
    Pincherle,S., Della trasformazione di Laplace e di alcune sue applicazioni.Mem. Accad. Bologna,4 ser.8 (1887), 125–143.Google Scholar
  71. 71.
    Pincherle,S., Die Transformation von Laplace. Section 16 of Funktionaloperationen und-gleichungen inEnc. Math. Wiss. II, 1, 2 (Ed.H. Burkhardt &W. Wirtinger) (Leipzig: Teubner, 1905) [IIA11], 781–784.Google Scholar
  72. 72.
    Pincherle,S., La transformation de Laplace. Section 22 of Équations et opérations fonctionelles.Enc. Sc. Math. II, 5, 2 (Ed.J. Molk) (Paris: Gauthier-Villars, 1914) [II26], 35–41. This paper is a translation and revision of Reference [70].Google Scholar
  73. 73.
    Poincaré,H., Sur les équations linéaires aux différentielles ordinaires et aux différences finies.Am. J. Math. 7 (1885), 1–56. Also inOeuvres de Henri Poincaré 1 (Ed.P. Appell) (Paris: Gauthier-Villars, 1928), 226–289.Google Scholar
  74. 74.
    Poisson,S. D., Mémoire sur la distribution de la chaleur dans les corps solides.J. É. Roy. Polytech. 12 (19 cah.) (1823), 1–162 (esp. 23–34).Google Scholar
  75. 75.
    Pringsheim,A., Über das Fouriersche Integraltheorem.Jahresb. Deutschen Math. Ver. 16 (1907), 2–16.Google Scholar
  76. 76.
    Riemann, B., Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse.Monatsber. K. Preuss. Acad. Wiss. (Berlin) (1859, 1860), 671–680. Also inBernhard Riemann's gesammelte mathematische Werke (Ed.H. Weber) (Leipzig: Teubner, 1876) (2nd Edition (1892); Reprinted New York, Dover: 1953), 145–153 with editorial notes, 154–155. English translation: On the number of primes less than a given magnitude, byH. M. Edwards as an appendix of hisRiemann's Zeta Function (New York and London: Academic Press, 1974), pp. 299–305.Google Scholar
  77. 77.
    Scherk,H. F., Über die Integration der Gleichung\(\frac{{\partial ^n y}}{{\partial x^n }} = \left( {\alpha + \beta x} \right)y\) J. reine ang. Math. (Crelle)10 (1853), 92–97.Google Scholar
  78. 78.
    Schlesinger,L.,Handbuch der Theorie der Linearen Differentialgleichungen (Leipzig: Teubner, Bd.1, 1895; Bd.2 (1), 1897; Bd.2 (2), 1898).Google Scholar
  79. 79.
    Schlesinger,L., Bericht über die Entwicklung der Theorie der linearen Differential-gleichungen seit 1865.Jahresb. Deutschen Math. Ver. 18 (1909), 133–266.Google Scholar
  80. 80.
    Schlömilch,O., Ueber das Integral\(\mathop \smallint \limits_0^\infty e^{ - ax} \sin ^m xdx\) Arch. Math. Phys. (Grunert)17 (1846), 38–45.Google Scholar
  81. 81.
    Schlömilch,O., Review ofStudien über die Integration linearer Differentialgleichungen byS. Spitzer.Z. Math. Phys. (Schlömilch)5 (1860), Literaturzeitung 17–18.Google Scholar
  82. 82.
    Spitzer,S., Integration der Differentialgleichung\(sy'' + \left( {r + qx} \right)y' + \left( {p + nx + mx^2 } \right)y = 0\) mittelst bestimmter Integrale.Arch. Math. Phys. (Grunert)23 (1854), 121–125.Google Scholar
  83. 83.
    Spitzer,S., Integration der Differentialgleichung\(\left( {a_2 + b_2 x} \right)y'' + \left( {a_1 + b_1 x} \right)y'\left( {a_0 + b_0 x} \right)y = 0\) Sitzungsb. Math. Naturwiss. Classe K. Akad. Wiss. (Wien)25 (1857), 31–70.Google Scholar
  84. 84.
    Spitzer,S., Integration der linearer Differentialgleichung\(\left( {a_2 + b_2 x} \right)y'' + \left( {a_1 + b_1 x} \right)y'\left( {a_0 + b_0 x} \right)y = 0\) J. reine ang. Math. (Crelle)54 (1857), 280–282.Google Scholar
  85. 85.
    Spitzer,S., Review ofIntegration der linearen Differentialgleichungen mit constanten und veränderlichen Coefficienten byJ. Petzval.Z. Math. Phys. (Schlömilch)3 (1858), Literaturzeitung 1–16.Google Scholar
  86. 86.
    Spitzer,S., Professor Petzval's Memoire: Ueber Herrn Spitzer's Abhandlung: Die Integration mehrerer Differentialgeichungen betreffend und die darin erhobenen Prioritäts-Ansprüche.Z. Math. Phys. (Schlömilch)3 (1858), Literaturzeitung 69–95.Google Scholar
  87. 87.
    Spitzer,S.,Studien über die Integration linearer Differential-Gleichungen, Vols. 1, 2, 3. (Vienna: Gerold's Sohn, 1860–1862).Google Scholar
  88. 88.
    Spitzer,S.,Neue Studien über die Integration linearer Differential-Gleichungen, Vols. 1, 2, 3. (Vienna: Gerold's Sohn, 1874–1883).Google Scholar
  89. 89.
    Spitzer,S.,Vorlesungen über lineare Differential-Gleichungen (Vienna: Gerold's Sohn, 1878).Google Scholar
  90. 90.
    Spitzer,S.,Integration partieller Differential-Gleichungen. (Vienna: Gerold's Sohn, 1879).Google Scholar
  91. 91.
    Spitzer, S., Of the many marginally relevant papers bySpitzer, the following are of most direct concern. The numbers are taken from the Royal Society'sCatalogue of Scientific Papers, save for those with the prefixS, which come fromSchlesinger's bibliography (reference [78]). (Neither of these sources, norPoggendorf's Handwörterbuch provides a complete listing of allSpitzer's papers.) See 28, 30, 31, 33, 35, 44, 45, 54, 66, 70, 72, 74, 76, 78, 79, 97, 98, 100 (S2), 101, 103, 105, 106, (S72, S74), 107, S73, 108, 109 (S75), 110 (S76), 111 (S71), 113, 121 (S342). See alsoGrunert's Archiv 30, 76–78;38, 137–140 andSchlömlich's Zeitschrift3, 47–53, 115–119.Google Scholar
  92. 92.
    Weiler,A., Integration der linearen Differentialgleichungen zweiter Ordnung mit zwei, drei, vier und mehr Veränderlichen.J. reine ang. Math. (Crelle)51 (1856), 105–207.Google Scholar
  93. 93.
    Weiler,A., Eine Bemerkung über Integration linearer Differentialgleichungen.J. reine ang. Math. (Crelle)55 (1858), 274–276.Google Scholar
  94. 94.
    Widder, D. V.,The Laplace Transform (Princeton University Press, 1946).Google Scholar
  95. 95.
    Winckler,A.,Über die Integration linearer Differentialgleichungen zweiter Ordnung mittelst einfacher Quadraturen (Vienna: Hölder, 1876).Google Scholar
  96. 96.
    Winckler,A.,Die Integration linearer Differentialgleichungen und der Herr Prof. Simon Spitzer in Wien (Vienna: Hölder, 1881).Google Scholar

Copyright information

© Springer-Verlag GmbH & Co 1981

Authors and Affiliations

  • Michael A. B. Deakin
    • 1
  1. 1.Department of MathematicsMonash UniversityClaytonAustralia

Personalised recommendations