Inventiones mathematicae

, Volume 82, Issue 1, pp 151–189 | Cite as

Arithmetic vector bundles and automorphic forms on Shimura varieties. I

  • Michael Harris
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baily, W.L., Jr., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. Math.84, 442–528 (1966)Google Scholar
  2. 2.
    Blasius, D.: On the critical values of HeckeL-series. (To appear)Google Scholar
  3. 3.
    Borovoi, M.: Canonical models of Shimura varieties. Handwritten notes dated 26/5/81Google Scholar
  4. 4.
    Brylinski, J.-L., Kashiwara, M.: Kazhdan-Lusztig conjecture and holonomic systems. Invent. Math.64, 387–410 (1981)Google Scholar
  5. 5.
    Deligne, P.: Travaux de Shimura. Sém. Bourbaki23, (1970/71), exp. 389. Lect. Notes Math.244, 123–165 (1972)Google Scholar
  6. 6.
    Deligne, P.: Variétés de Shimura: Interprétation modulaire, et techniques de construction des modèles canoniques. Proc. Symp. Pure Math.33, 247–290 (1979)Google Scholar
  7. 7.
    Deligne, P.: Fibrés sur les variétés de Shimura. Personal communication, July 1980Google Scholar
  8. 8.
    Deligne, P.: Cycles de Hodge absolus et périodes des intégrales des variétés abéliennes (rédigé par J-L. Brylinski). Mem. Soc. Math. Fr.108, 23–33 (1980)Google Scholar
  9. 9.
    Deligne, P., Milne, J.S., Ogus, A., Shih, K.Y.: Hodge Cycles, Motives, and Shimura Varieties. Lect. Notes Math.900, (1982)Google Scholar
  10. 10.
    Dixmier, J.: Algèbres Enveloppantes. Paris: Gauthier-Villars 1974Google Scholar
  11. 11.
    Garrett, P.B.: Arithmetic and structure of automorphic forms on bounded symmetric domains. Am. J. Math.105, 1171–1194 (1983). Ibid. Am. J. Math.105, 1195–1216 (1983)Google Scholar
  12. 12.
    Harris, M.: Eisenstein series on Shimura varieties. Ann. Math.119, 59–94 (1984)Google Scholar
  13. 13.
    Harris, M.: Arithmetic vector bundles on Shimura varieties. In: Proceedings of the Katata Symposium on Automorphic Forms of Several Variables, Progr. Math. Boston: Birkhäuser 1983 (To appear)Google Scholar
  14. 14.
    Kazhdan, D.: On arithmetic varieties. In: Lie Groups and their Representations (I.M. Gelfand, ed.), pp. 151–217. Akadémidi Kiadó, Budapest 1975Google Scholar
  15. 15.
    Kazhdan, D.: On arithmetic varieties, II. Isr. J. Math.44, 139–159 (1983)Google Scholar
  16. 16.
    Langlands, R.P.: Automorphic representations. Shimura varieties and motives. Ein Märchen Proc. Symp. Pure Math.33, 205–246 (1979)Google Scholar
  17. 17.
    Milne, J.S.: The action of an automorphism of ℂ on a Shimura variety and its special points. Progr. Math. vol. 35, pp. 234–265. Boston: Birkhäuser 1983Google Scholar
  18. 18.
    Mumford, D.: Geometric Invariant Theory. Berlin: Springer 1965Google Scholar
  19. 19.
    Shimura, G.: On canonical models of arithmetic quotients of bounded symmetric domains I, II. Ann. Math.91, 144–222 (1970);92, 528–549 (1970)Google Scholar
  20. 20.
    Shimura, G.: On certain reciprocity laws for theta functions and modular forms. Acta Math.141, 35–71 (1978)Google Scholar
  21. 21.
    Shimura, G.: The arithmetic of automorphic forms with respect to a unitary group. Ann. Math.107, 569–605 (1978)Google Scholar
  22. 22.
    Shimura, G.: On some problems of algebraicity. Proc. Int. Cong. Math. 1978, VolI, 373–379 (1980)Google Scholar
  23. 23.
    Shimura, G.: Automorphic forms and the periods of abelian varieties. J. Math. Soc. Japan31, 561–592 (1979)Google Scholar
  24. 24.
    Shimura, G.: The arithmetic of certain zeta functions and automorphic forms on orthogonal groups. Ann. Math.111, 313–375 (1980)Google Scholar
  25. 25.
    Shimura, G., Taniyama, Y.: Complex Multiplication of Abelian Varieties and its Applications to Number Theory. Publ. Math. Soc. Japan, Vol. 6 1961Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Michael Harris
    • 1
  1. 1.Department of MathematicsBrandeis UniversityWalthamUSA

Personalised recommendations