Inventiones mathematicae

, Volume 82, Issue 1, pp 57–75

Série de Poincaré-Koszul associée aux groupes de tresses pures

  • Toshitake Kohao
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Aomoto, K.: On the acyclicity of free cober constructions I, II. Proc. Jap. Acad.53, 35–36 (1977)Google Scholar
  2. 2.
    Aomoto, K.: Poincaré series of the holonomy Lie algebra attached to a configuration of lines. Nagoya University 1984 (Preprint)Google Scholar
  3. 3.
    Arnold, V.I.: The cohomology ring of the colored braid group. Mat. Zametki5, 227–231 (1969); Math. Notes5, 138–140 (1969)Google Scholar
  4. 4.
    Birman, J.: Braids, links, and mapping class groups. Ann. Math. Stud.82, Princeton, N.J.: Princeton University Press 1975Google Scholar
  5. 5.
    Brieskorn, E.: Sur les groupes de tresses (d'après V.I. Arnold). Séminaire Bourbaki 24e année 1971/1972. Lect. Notes, no. 317. Berlin: Springer 1973Google Scholar
  6. 6.
    Chen, K.T.: Iterated integrals of differential forms and loop space cohomology. Ann. Math.97, 217–246 (1973)Google Scholar
  7. 7.
    Deligne, P.: Théorie de Hodge II. Publ. Math. IHES40, 5–58 (1971)Google Scholar
  8. 8.
    Deligne, P.: Les immeubles des groupes de tresses généralisés. Invent. Math.17, 273–302 (1972)Google Scholar
  9. 9.
    Deligne, P., Griffiths, P., Morgan, J., Sullivan, D.: Real homotopy theory of Kähler manifolds. Invent. Math.29, 245–274 (1975)Google Scholar
  10. 10.
    Friedlander, E., Griffiths, P., Morgan, J.: Homotopy theory of differential forms. Seminario di geometria, Firenze 1972Google Scholar
  11. 11.
    Greub, W., Halperin, S., Vanstone, R.: Connections, curvature and cohomology III. New York: Academic Press 1976Google Scholar
  12. 12.
    Hain, R.M.: The de Rham homotopy theory of complex algebraic varieties. University of Utah 1984 (Preprint)Google Scholar
  13. 13.
    Hopf, H.: Fundamentalgruppe und zweite Bettische Gruppe. Comment. Math. Helv.14, 257–309 (1941–42)Google Scholar
  14. 14.
    Hilton, J.P., Stammbach, U.: A course in homological algebra. GTM. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  15. 15.
    Kohno, T.: Differential forms and the fundamental group of the complement of hypersurfaces. Proc. Pure Math. Am. Math. Soc.40, 655–662 (1983)Google Scholar
  16. 16.
    Kohno, T.: On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces. Nagoya Math. J.92, 21–37 (1983)Google Scholar
  17. 17.
    Labute, J.P.: On the descending central series of groups with a single defining relation. J. Algebra14, 16–23 (1970)Google Scholar
  18. 18.
    Lyndon, R.: Cohomology theory of groups with a single defining relation. Ann. Math.52, 650–665 (1950)Google Scholar
  19. 19.
    Malcev, A.: Nilpotent groups without torsion. Izv. Akad. Nauk SSSR13, 201–212 (1949)Google Scholar
  20. 20.
    Morgan, J.: The algebraic topology of smooth algebraic varieties. Publ. Math. IHES48, 137–204 (1978)Google Scholar
  21. 21.
    Magnus, W., Karrass, A., Solitar, D.: Combinatorial group theory. New York: John Wiley 1966Google Scholar
  22. 22.
    Orlik, P., Solomon, L.: Combinatorics and the topology of complement of hyperplanes. Invent. Math.56, 167–189 (1980)Google Scholar
  23. 23.
    Sullivan, D.: Infinitesimal computations in topology. Publ. Math. IHES47, 269–331 (1977)Google Scholar
  24. 24.
    Terao, H.: On Betti numbers of complement of hyperplanes. Publ. Res. Inst. Math. Sci. Kyoto17, 657–663 (1981)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Toshitake Kohao
    • 1
  1. 1.Department of Mathematics, Faculty of ScienceNagoya UniversityNagoyaJapan

Personalised recommendations