Advertisement

Inventiones mathematicae

, Volume 83, Issue 3, pp 449–505 | Cite as

The unitary dual of GL(n) over an archimedean field

  • David A. VoganJr.
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arthur, J.: On some problems suggested by the trace formula In: Proceedings of the Special Year in Harmonic Analysis, University of Maryland, Herb, R., Lipsman, R., Rosenberg, J. (eds): Lect. Notes Math.1024, Berlin-Heidelberg-New York-Tokyo:Springer 1983Google Scholar
  2. 2.
    Barbasch, D., Vogan, D.: Unipotent representations of complex semisimple Lie groups. Ann. Math.121, 41–110 (1985)Google Scholar
  3. 3.
    Bargmann, V.: Irreducible unitary representations of the Lorentz group. Ann. Math.48, 568–640 (1947)Google Scholar
  4. 4.
    Beilinson, A., Bernstein, J.: Localisation de g-modules. C. R. Acad. Sci., Paris292, 15–18 (1981)Google Scholar
  5. 5.
    Bernstein, I.N., Gelfand, I. M., Gelfand, S.I.: Models of representations of compact Lie groups. Funct. Anal. Appl.9, 61–62 (1975)Google Scholar
  6. 6.
    Borho, W., Brylinski, J.-L.: Differential operators on homogeneous spaces I. Invent. Math.69, 437–476 (1982)Google Scholar
  7. 7.
    Conze-Berline, N., Duflo, M.: Sur les représentations induites des groupes semi-simples complexes. Compos. Math.34, 307–336 (1977)Google Scholar
  8. 8.
    Duflo, M.: Sur la classification des idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie semi-simple. Ann. Math.105, 107–120 (1977)Google Scholar
  9. 9.
    Duflo, M.: Représentations unitaires des groupes semi-simples complexes. pp. 19–34. In: Group Theoretical Methods in Physics. Proc. Eighth Internat. Colloq., Kiryat Anavim, 1979. Ann. Israel Phys. Soc.3, Bristol: Hilger, 1980Google Scholar
  10. 10.
    Enright, T. J.: Relative Lie algebra cohomology and unitary representations of complex Lie groups. Duke Math. J.46, 513–525 (1979)Google Scholar
  11. 11.
    Enright, T.J., Wallach, N.R.: Notes on homological algebra and representations of Lie algebras. Duke Math. J.47, 1–15 (1980)Google Scholar
  12. 12.
    Gelfand, I.M.: Some aspects of functional analysis and algebra. pp. 253–276. In:Proceedings of the International Congress of Mathematicians 1954 (Amsterdam). Vol. I. Groningen: Erven P. Noordhoof, N. V., Amsterdam: North Holland Publishing Co., 1957Google Scholar
  13. 13.
    Gelfand, I.M., Naimark, M.A.: Unitary representations of the Lorentz group. Izv. Akad. Nauk SSSR11, 411–504 (1947)Google Scholar
  14. 14.
    Gelfand, I.M., Naimark, M.A.: Unitary representations of the classical groups, Trudy Mat. Inst. Steklov36 (1950). German translation; Berlin: Akademie-Verlag, 1957Google Scholar
  15. 15.
    Guillemonat, A.: Représentations sphériques singulières. In: Non-commutative Harmonic Analysis and Lie Groups, Carmona, J., Vergne, M. (eds), Lect. Notes Math.1020. Berlin-Heidelberg-New York-Tokyo: Springer-Verlag 1983Google Scholar
  16. 16.
    Harish-Chandra: Representations of semi-simple Lie groups I, Trans. Amer. Math. Soc.75, 185–243 (1953)Google Scholar
  17. 17.
    Helgason, S.: Groups and Geometric Analysis, Orlando-Florida: Academic Press 1984Google Scholar
  18. 18.
    Hirai, T.: On irreducible representations of the Lorentz group ofn-th order. Proc. Jap. Acad.38, 83–87 (1962)Google Scholar
  19. 19.
    Joseph, A.: Sur la classification des idéaux primitifs dans l'algèbre de sl (n+1,ℂ). C. R. Acad. Paris287, 302–306 (1978)Google Scholar
  20. 20.
    Joseph, A.: On the classification of primitive ideals in the enveloping algebra of a semisimple Lie algebra. In: Lie group representations I, Herb, R., Lipsman, R., Rosenberg, J. (eds): Lect. Notes Math.1024, Berlin-Heidelberg-New York-Tokyo: Springer 1983.Google Scholar
  21. 21.
    Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math.53, 165–184 (1979)Google Scholar
  22. 22.
    Knapp, A. W.: Representation theory of real semisimple groups: an overview based on examples (to appear)Google Scholar
  23. 23.
    Knapp, A. W., Speh, B.: The role of basic cases in classification: Theorems about unitary representations applicable toSU (N, 2), 119–160. In: Non-commutative Harmonic Analysis and Lie Groups, Carmona, J., Vergne, M.: (eds.): Lect. Notes Math.1020. Berlin-Heidelberg-New York-Tokyo: Springer 1983Google Scholar
  24. 24.
    Kostant, B.: On the existence and irreducibility of certain series of representations. Bull. Am. Math. Soc.75, 627–642 (1969)Google Scholar
  25. 25.
    Kraft, H., Procesi, C.: Closures of conjugacy classes of matrices are normal. Invent. Math.53, 227–247 (1979)Google Scholar
  26. 26.
    Naimark, M.A.: On the description of all unitary representations of the complex classical groups I. Mat. Sb.35, 317–356 (1954)Google Scholar
  27. 27.
    Naimark, M.A.: On the description of all unitary representations of the complex classical groups II. Mat. Sb.37, 121–140 (1955)Google Scholar
  28. 28.
    Speh, B.: Some results on principal series for GL (n, ℝ). Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts, June, 1977Google Scholar
  29. 29.
    Speh, B.: Unitary representations ofSL (n, ℝ) and the cohomology of congruence subgroups. 483–505 in Non-commutative Harmonic Analysis and Lie groups, Carmona, J., Vergne, M. (eds.): Lect. Notes Math.880. Berlin-Heidelberg-New York: Springer 1981Google Scholar
  30. 30.
    Speh, B.: The unitary dual of GL (3, ℝ) and GL (4, ℝ). Math. Ann.258, 113–133 (1981)Google Scholar
  31. 31.
    Stein, E. M.: Analysis in matrix spaces and some new representations of SL (n,ℂ). Ann. Math.86, 461–490 (1967)Google Scholar
  32. 32.
    Tadic, M.: Unitary dual ofp-adic GL (n). Proof of Bernstein conjectures. Bull. Am., Math. Soc. (N.S.)13, 39–42 (1985)Google Scholar
  33. 33.
    Tsuchikawa, M.: On the representations of SL (3,ℂ),III.Proc. Jap. Acad.44, 130–132 (1968)Google Scholar
  34. 34.
    Vakhutinski, I.: Unitary representations of GL (3, ℝ). Mat. Sb.75, 303–320 (1968)Google Scholar
  35. 35.
    Vogan, D.: The algebraic structure of the representations of semisimple Lie groups I. Ann. Math.109, 1–60 (1979)Google Scholar
  36. 36.
    Vogan, D.: Representations of Real Reductive Lie Groups. Boston-Basel-Stuttgart: Birkh tuser 1981Google Scholar
  37. 37.
    Vogan, D.: Understanding the unitary dual. In: Proceedings of the Special Year in Harmonic Analysis, University of Maryland, Herb, R., Lipsman, R., Rosenberg, J. (eds.) Lect. Notes Math.1024, Berlin-Heidelberg-New York-Tokyo: Springer 1983Google Scholar
  38. 38.
    Vogan, D.: Unitarizability of certain series of representations. Ann. Math.120, 141–187 (1984)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • David A. VoganJr.
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations