Inventiones mathematicae

, Volume 83, Issue 3, pp 411–424

On the automorphism group of a compact Lorentz manifold and other geometric manifolds

  • Robert J. Zimmer


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borel, A.: Density properties for certain subgroups of semisimple Lie groups without compact factors. Ann. Math.72, 179–188 (1960)Google Scholar
  2. 2.
    Eberlein, P., O'Neill, B.: Visibility manifolds. Pac. J. Math.46, 45–109 (1973)Google Scholar
  3. 3.
    Jacobson, N.: Lie algebras. New York: Interscience 1962Google Scholar
  4. 4.
    Kobayashi, S.: Transformation groups in differential geometry. New York: Springer 1972Google Scholar
  5. 5.
    Moore, C.C.: Amenable subgroups of semisimple groups and proximal flows. Isr. J. Math.34, 121–138 (1979)Google Scholar
  6. 6.
    Mostow, G.D.: Quasi-conformal mappings inn-space and the rigidity of hyperbolic space forms. Publ. Math. I.H.E.S.34, 53–104 (1967)Google Scholar
  7. 7.
    Schmidt, K.: Cocycles of ergodic transformation groups, India: MacMillan Co. 1977Google Scholar
  8. 8.
    Sternberg, S.: Lectures on differential geometry. Englewood Cliffs, N.J.: Prentice-Hall 1964Google Scholar
  9. 9.
    Zimmer, R.J.: Extensions of ergodic group actions. Ill. J. Math.20, 373–409 (1976)Google Scholar
  10. 10.
    Zimmer, R.J.: On the cohomology of ergodic group actions. Isr. J. Math.35, 289–300 (1980)Google Scholar
  11. 11.
    Zimmer, R.J.: Amenable ergodic group actions and an application to Poisson boundaries of random walks. J. Funct. Anal.27, 350–372 (1978)Google Scholar
  12. 12.
    Zimmer, R.J.: An algebraic group associated to an ergodic diffeomorphism. Compos. Math.43, 59–69 (1981)Google Scholar
  13. 13.
    Zimmer, R.J.: Induced and amenable actions of Lie groups. Ann. Sci. Ec. Norm. Super.11, 407–428 (1978)Google Scholar
  14. 14.
    Zimmer, R.J.: Ergodic theory and semisimple groups. Boston: Birkhäuser 1984Google Scholar
  15. 15.
    Zimmer, R.J.: Semisimple automorphism groups ofG-structures. J. Differ. Geom19, 117–123 (1984)Google Scholar
  16. 16.
    Zimmer, R.J.: Volume preserving actions of lattices in semisimple groups on compact manifolds. Publ. Math. I.H.E.S.59, 5–33 (1984)Google Scholar
  17. 17.
    Zimmer, R.J.: Actions of lattices in semisimple groups preserving aG-structure of finite type. Ergodic Theory Dyn. Syst. (To appear)Google Scholar
  18. 18.
    Zimmer, R.J.: Kazhdan groups acting on compact manifolds. Invent. Math.75, 425–436 (1984)Google Scholar
  19. 19.
    Zimmer R.J.: On discrete subgroups of Lie groups and elliptic geometric structures. Rev. Math. Iber. Am., vol. 1 (To appear)Google Scholar
  20. 20.
    Zimmer, R.J.: Lattices in semisimple groups and distal geometric structures. Invent. Math.80, 123–137 (1985)Google Scholar
  21. 21.
    Zimmer, R.J.: Ergodic theory, semisimple Lie groups, and foliations by manifolds of negative curvature. Publ. Math. I.H.E.S.55, 37–62 (1982)Google Scholar
  22. 22.
    Feldman, J., Moore, C.C.: Ergodic equivalence relations, cohomology, and von Neumann algebras, I. Trans. Am. Math. Soc.234, 289–324 (1977)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Robert J. Zimmer
    • 1
  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations