Inventiones mathematicae

, Volume 94, Issue 2, pp 421–453 | Cite as

The weak typeL1 convergence of eigenfunction expansions for pseudodifferential operators

  • F. M. Christ
  • C. D. Sogge
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avakumovič, V.G.: Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten. Math. Z.65, 327–344 (1956)Google Scholar
  2. 2.
    Berard, P.H.: Riesz means on Riemannian manifolds. Proc. Symp. Pure Math.XXXVI, 1–12 (1980)Google Scholar
  3. 3.
    Carleson, L., Sjölin, P.: Oscillatory integrals and a multiplier problem for the disc. Stud. Math.44, 287–299 (1972)Google Scholar
  4. 4.
    Chanillo, S., Muckenhoupt, B.: Weak type estimates for Bochner-Riesz spherical summation multipliers. Trans. Am. Math. Soc.294, 693–703 (1986)Google Scholar
  5. 5.
    Christ, F.M.: Weak type (1, 1) bounds for rough operators. Ann. Math.128, 19–42 (1988)Google Scholar
  6. 6.
    Christ, F.M.: Weak type endpoint bounds for Bochner-Riesz multipliers. Rev. Mat. Ibero-Am. (to appear)Google Scholar
  7. 7.
    Christ, F.M., Rubio de Francia, J.L.: Weak type (1, 1) bounds for rough operators. II. Invent. Math.93, 225–237 (1988)Google Scholar
  8. 8.
    Córdoba, A.: A note on Bochner-Riesz operators. Duke Math. J.46, 505–511 (1979)Google Scholar
  9. 9.
    Fefferman, C.: Inequalities for strongly singular convolution operators. Acta Math.124, 9–36 (1970)Google Scholar
  10. 10.
    Fefferman, C.: The multiplier problem for the ball. Ann. Math.94, 330–336 (1971)Google Scholar
  11. 11.
    Fefferman, C.: A note on spherical summation multipliers. Isr. J. Math.15, 44–52 (1973)Google Scholar
  12. 12.
    Gelfand, I.M., Shilov, G.E.: Generalized functions, Vol. I. New York: Academic Press 1964Google Scholar
  13. 13.
    Hörmander, L.: On the Riesz means of spectral functions and eigenfunction expansions for elliptic differential operators. In: Some recent advances in the basic sciences, pp. 155–202. Yeshiva Univ., New York, 1966Google Scholar
  14. 14.
    Hörmander, L.: The spectral function of an elliptic operator. Acta Math.88, 341–370 (1968)Google Scholar
  15. 15.
    Kenig, C., Stanton, R., Tomas, P.: Divergence of eigenfunction expansions. J. Funct. Anal.46, 28–44 (1982)Google Scholar
  16. 16.
    Levitan, B.M.: On the asymptotic behavior of the spectral function of a self-adjont differential equation of the second order. Izv. Akad. Nauk SSSR, Ser. Mat.16, 325–352 (1952)Google Scholar
  17. 17.
    Mitjagin, B.S.: Divergenz von Spektralentwicklungen inL p-Räumen. Boston: Birkhäuser 1974Google Scholar
  18. 18.
    Seeley, R.: Complex powers of an elliptic operator. Proc. Symp. Pure Math.X, 288–307 (1968)Google Scholar
  19. 19.
    Sogge, C.D.: Oscillatory integrals and spherical harmonics. Duke Math. J.53, 43–65 (1986)Google Scholar
  20. 20.
    Sogge, C.D.: Concerning theL p norm of spectral clusters for second order elliptic operators on compact manifolds. J. Funct. Anal.77, 123–134 (1988)Google Scholar
  21. 21.
    Sogge, C.D.: On the convergence of Riesz means on compact manifolds. Ann. Math.126, 439–447 (1987)Google Scholar
  22. 22.
    Sogge, C.D., Stein, E.M.: Averages of functions over hypersurfaces inR n. Invent. Math.82, 543–556 (1985)Google Scholar
  23. 23.
    Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton, N.J.: Princeton Univ. Press 1971Google Scholar
  24. 24.
    Stein, E.M.: Oscillatory integrals in Fourier analysis. Beijing Lectures in Harmonic Analysis, pp. 307–356. Princeton Univ. Press 1986Google Scholar
  25. 25.
    Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton Univ. Press 1971Google Scholar
  26. 26.
    Taylor, M.: Pseudodifferential operators. Princeton Univ. Press 1981Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • F. M. Christ
    • 1
  • C. D. Sogge
    • 2
  1. 1.Department of MathematicsUniversity of California of Los AngelesLos AngelesUSA
  2. 2.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations