Inventiones mathematicae

, Volume 94, Issue 2, pp 245–305

On the critical values of certain Dirichlet series and the periods of automorphic forms

  • Goro Shimura

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B] Bluher, A.: Thesis, Princeton University, 1988Google Scholar
  2. [H] Hida, H.: On abelian varieties with complex multiplication as factors of the Jacobians of Shimura curves. Am. J. Math.103, 727–776 (1981)Google Scholar
  3. [I] Im, J.: Thesis, Princeton University, 1988Google Scholar
  4. [S] Shimizu, H.: On zeta functions of quarternion algebras. Ann. Math.81, 166–193 (1965)Google Scholar
  5. [59] Shimura, G.: Sur les intégrales attachées aux formes automorphes. J. Math. Soc. Japan11, 291–311 (1959)Google Scholar
  6. [62] Shimura, G.: On Dirichlet series and abelian varieties attached to automorphic forms. Ann. Math.76, 237–294 (1962)Google Scholar
  7. [67] Shimura, G.: Construction of class fields and zeta functions of algebraic curves. Ann. Math.85, 58–159 (1967)Google Scholar
  8. [71] Shimura, G.: Introduction to the arithmetic theory of automorphic functions. (Publ. Math. Soc. of Japan, Vol. 11). Iwanami Shoten and Princeton Univ. Press, 1971Google Scholar
  9. [73] Shimura, G.: On the factors of the jacobian variety of a modular function field. J. Math. Soc. Japan25, 523–544 (1973)Google Scholar
  10. [75] Shimura, G.: On the holomorphy of certain Dirichlet series. Proc. London Math. Soc. (Ser. 3)31, 79–98 (1975)Google Scholar
  11. [77] Shimura, G.: On the periods of modular forms. Math. Ann.229, 211–221 (1977)Google Scholar
  12. [78] Shimura, G.: The special values of the zeta functions associated with Hilbert modular forms. Duke Math. J.45, 637–679 (1978)Google Scholar
  13. [80] Shimura, G.: The arithmetic of certain zeta functions and automorphic forms on orthogonal groups. Ann. Math.111, 313–375 (1980)Google Scholar
  14. [81] Shimura, G.: On certain zeta functions attached to two Hilbert modular forms I, II. Ann. Math.114, 127–164, 569–607 (1981)Google Scholar
  15. [81z] Shimura, G.: The critical values of certain zeta functions associated with modular forms of halfintegral weight. J. Math. Soc. Japan33, 649–672 (1981)Google Scholar
  16. [82] Shimura, G.: The periods of certain automorphic forms of arithmetic type. J. Fac. Sci. Univ. Tokyo (Sec. IA)28, 605–632 (1982)Google Scholar
  17. [83a] Shimura, G.: Algebraic relations between critical values of zeta functions and inner products. Am. J. Math.104, 253–285 (1983)Google Scholar
  18. [83b] Shimura, G.: On Eisenstein series. Duke Math. J.50, 417–476 (1983)Google Scholar
  19. [84] Shimura, G.: Differential operators and the singular values of Eisenstein series. Duke Math. J.51, 261–329 (1984)Google Scholar
  20. [85a] Shimura, G.: On Eisenstein series of half-integral weight. Duke Math. J.52, 281–324 (1985)Google Scholar
  21. [85b] Shimura, G.: On the Eisenstein series of Hilbert modular groups. Rev. Mat. Ib.1 (No. 3) 1–42 (1985)Google Scholar
  22. [86] Shimura, G.: On a class of nearly holomorphic automorphic forms. Ann. Math.123, 347–406 (1986)Google Scholar
  23. [87a] Shimura, G.: Nearly holomorphic functions on hermitian symmetric spaces. Math. Ann.278, 1–28 (1987)Google Scholar
  24. [87b] Shimura, G.: On Hilbert modular forms of half-integral weight. Duke Math. J.55, 765–838 (1987)Google Scholar
  25. [St] Sturm, J.: Special values of zeta functions and Eisenstein series of half integral weight. Am. J. Math.102, 219–240 (1980); Addendum, ibid. pp. 781–783Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Goro Shimura
    • 1
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations