Inventiones mathematicae

, Volume 94, Issue 3, pp 661–677

On the seventh order mock theta functions

  • Dean Hickerson


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A] Andrews, G.E.: The fifth and seventh order mock theta functions. Trans. Am. Math. Soc.293, 113–134 (1986)Google Scholar
  2. [A-G1] Andrews, G.E., Garvan, F.G.: Ramanujan's “Lost” Notebook VI: The mock theta conjectures, Dept. of Math. Research Report no. 87007, The Pennsylvania State Univ., University Park, PA 16802; Adv. Math. (in press)Google Scholar
  3. [A-G2] Andrews, G.E., Garvan, F.G.: Dyson's crank of a partition. Bull. Am. Math. Soc.18, 167–171 (1988)Google Scholar
  4. [A-S] Atkin, A.O.L., Swinnerton-Dyer, P.: Some properties of partitions. Proc. London Math. Soc. (3)4, 84–106 (1954)Google Scholar
  5. [D1] Dyson, F.J.: Some guesses in the theory of partitions. Eureka (Cambridge)8, 10–15 (1944)Google Scholar
  6. [D2] Dyson, F.J.: Mappings and symmetries of partitions. J. Comb. Theory, Ser. A (in press)Google Scholar
  7. [G1] Garvan, F.G.: New combinatorial interpretations of Ramanujan's partition congruences mod 5, 7, and 11. Trans. Am. Math. Soc.305, 47–77 (1988)Google Scholar
  8. [G2] Garvan, F.G.: Combinatorial interpretations of Ramanujan's partition congruences. In: “Ramanujan Revisited: Proc. of the Centenary Conference, Univ. of Illinois at Urbana-Champaign, June 1–5, 1987”. San Diego: Acad. Press 1988Google Scholar
  9. [H] Hickerson, D.: A proof of the mock theta conjectures. Invent. Math.94, 639–660 (1988)Google Scholar
  10. [H-W] Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers, 4th edition. London: Oxford Univ. Press 1968Google Scholar
  11. [R1] Ramanujan, S.: Collected Papers, Hardy, G.H., Seshu Aiyar, P.V., Wilson, P.M. (eds.). London: Cambridge Univ. Press 1927Google Scholar
  12. [R2] Ramanujan, S.: The lost notebook and other unpublished papers. New Delhi: Narosa Publishing House 1988Google Scholar
  13. [W] Watson, G.N.: The final problem: an account of the mock theta functions. J. London Math. Soc.11, 55–80 (1936)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Dean Hickerson
    • 1
  1. 1.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations