Inventiones mathematicae

, Volume 94, Issue 3, pp 455–478

Explicit Brauer induction

  • Victor Snaith

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, E.: Über eine neue Art vonL-Reihen. Abh. Math. Sem. Univ. Hamburg, 89–108 (1923); Collected papers, 105–124. Springer: New York Heidelberg Berlin (1965)Google Scholar
  2. 2.
    Atiyah, M.F.: Characters and cohomology of finite groups. Publ. Math., Inst. Hautes Etud. Sci.9, 23–64 (1961); (Collected Works, vol. II, 85–128. Clarendon Press Oxford (1988)Google Scholar
  3. 3.
    Atiyah, M.F., Bott, R.: A Lefschetz fixed point formula for elliptic complexes: I. Ann. Math.86, 374–407 (1967); (M.F. Atiyah, Collected Works, vol. III, 91–126. Clarendon Press, Oxford (1988))Google Scholar
  4. 4.
    Borel, A.: Cohomologie deSL n et valeurs de fonctions zêta aux points entiers. Ann. Sc. Norm. Super. Pisa, Cl. Sci. IV. Ser.4, 613–636 (1977); Correction, ibid. Borel, A.: Cohomologie deSL n et valeurs de fonctions zêta aux points entiers.Ann. Sc. Norm. Super. Pisa, Cl. Sci. IV. Ser.7, 373 (1980); Oeuvres Vol. III, 495–519. Springer: Berlin Heidelberg New York Tokyo (1983)Google Scholar
  5. 5.
    Borel, A.: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math. (2)57, 115–207 (1953) Oeuvres Vol. I, 123–215. Springer: Berlin Heidelberg New York (1983)Google Scholar
  6. 6.
    Bott, R.: Homogeneous vector bundles. Ann. Math.66, 203–248 (1957)Google Scholar
  7. 7.
    Brauer, R.: Beziehungen zwischen Klassenzahlen von Teilkörpern eines galoischen Körpers. Math. Nachr.4, 158–174 (1951)Google Scholar
  8. 8.
    Bredon, G.E.: Equivariant cohomology theories. (Lect. Notes Math. Vol. 34). Berlin-Heidelberg-New York: Springer 1967Google Scholar
  9. 9.
    Brown, K.: Euler characteristics of discrete groups andG-spaces. Invent. Math.27, 229–264 (1974)Google Scholar
  10. 10.
    Buhler, J.P.: Icosahedral Galois representations. (Lect. Notes Math., Vol. 654). Berlin-Heidelberg-New York: Springer 1978Google Scholar
  11. 11.
    Carlsson, G.: Equivariant stable homotopy and Segal's Burnside ring conjecture. Ann. Math.120, 189–224 (1984)Google Scholar
  12. 12.
    Chevalley, C.: Theory of Lie groups. (Princeton University Maths. Series, Vol. 8. Princeton University Press 1962Google Scholar
  13. 13.
    Curtis, C.W., Reiner, I.: Methods of representation theory, Vol. I. New York: Wiley 1981Google Scholar
  14. 14.
    Deligne, P.: Les constantes des équations fonctionnelles des fonctionsL. (Lect. Notes Math., Vol. 349, pp. 501–597). Berlin-Heidelberg-New York: Springer 1973Google Scholar
  15. 15.
    Dress, A.: The ring of monomial representationsI: Structure theory. J. Algebra18, 137–157 (1971)Google Scholar
  16. 16.
    Feshbach, M.: The transfer and compact Lie groups. Thesis Stanford University (1976); Bull. Am. Math. Soc.83, 372–374 (1977)Google Scholar
  17. 17.
    Feit, W.: Characters of finite groups. New York: Benjamin 1967Google Scholar
  18. 18.
    Fröhlich, A.: Galois structure of rings of algebraic integers. Ergeb. Math. (3), Vol. 1). Berlin-Heidelberg-New York: Springer 1983Google Scholar
  19. 19.
    Fröhlich, A.: Module conductors and module resolvents. Proc. Lond. Math. Soc.32, 279–321 (1976)Google Scholar
  20. 20.
    Isaacs, I.M.: Character theory of finite groups. New York: Academic Press 1976Google Scholar
  21. 21.
    Jacobsons, N.: Basic algebra, Vol. II. New York W.H. Freeman 1976Google Scholar
  22. 22.
    Klein, F.: The icosahedron and the solution of equations of the fifth degree. New York Dover 1956Google Scholar
  23. 23.
    Lewis, L.G., May, J.P., McClure, J.E.: ClassifyingG-spaces and the Segal conjecture. (Current trends in algebraic topology. Proc. C.M.S. Conf., Vol. 2, Part 2 165–179 (1981)Google Scholar
  24. 24.
    Martinet, J.: Character theory and ArtinL-functions. (Algebraic number fields Fröhlich, A. (ed.) pp. 1–88). New York: Academic Press 1977Google Scholar
  25. 25.
    Palais, R.S.: Classification ofG-spaces. Mem. Am. Math. Soc.36, 1–72 (1960)Google Scholar
  26. 26.
    Rees, E.G.: Notes on geometry. (Universitext in Mathematics). Berlin-Heidelberg-New York: Springer 1983Google Scholar
  27. 27.
    Segal, G.B.: The representation ring of a compact Lie group. Publ. Math., Inst. Hautes Etud. Sci.34, 113–128 (1968)Google Scholar
  28. 28.
    Segal, G.B.: Permutation representations of finitep-groups. Q. J. Math. Oxford (2)23, 375–381 (1972)Google Scholar
  29. 29.
    Serre, J.-P.: Linear representations of finite groups. (Grad. Texts in Math., Vol. 42). Berlin-Heidelberg-New York: Springer 1977Google Scholar
  30. 30.
    Serre, J.-P.: Extensions icosaédriques (Oeuvres Vol. III, pp. 550–554). Berlin-Heidelberg-New York: Springer (1972–1984)Google Scholar
  31. 31.
    Snaith, V.P.: Algebraic cobordism andK-theory. Mem. Am. Math. Soc.221, 1–152 (1979)Google Scholar
  32. 32.
    Snaith, V.P.: Topological methods in Galois representation theory. (C.M. Soc. Monographs in Mathematics). New York: Wiley (in press)Google Scholar
  33. 33.
    Snaith, V.P., Zelewski, P.: Stable maps into the classifying spaces of compact Lie groups; U.W.O. preprint 1987Google Scholar
  34. 34.
    Soulé, C.: Régulateurs: Sém. Bourbaki (1984/85) Astérisque133–134, 237–253 (1986)Google Scholar
  35. 35.
    Soulé, C.: Opérations enK-théorie algébrique. Can. J. Math.37, 488–550 (1985)Google Scholar
  36. 36.
    Soulé, C.:K-theorie des anneaux d'entiers de corps de nombres et cohomologie étale. Invent. Math.55, 251–295 (1979)Google Scholar
  37. 37.
    Verdier, J.-L.: Caractéristique d'Euler-Poincaré. Bull. Soc. Math. France101, 441–445 (1973)Google Scholar
  38. 38.
    Walter, C.D.: Brauer's class number relation. Acta Arith.XXXV, 33–40 (1979)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Victor Snaith
    • 1
  1. 1.Department of MathematicsMcMaster UniversityHamiltonCanada

Personalised recommendations