Advertisement

Inventiones mathematicae

, Volume 68, Issue 1, pp 21–101 | Cite as

Über die lokale Zetafunktion von Shimuravarietäten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik

  • M. Rapoport
  • Th. Zink
Article

On the local zeta function of Shimura varieties. Monodromy filtration and vanishing cycles in unequal characteristic

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Artin, M.: Grothendieck topologies. Harvard University 1962Google Scholar
  2. 2.
    Borel, A.: AutomorphicL-functions. Proc. of Symp. Pure Math.33 (T.2) 27–61 (1979)Google Scholar
  3. 3.
    Borel, A., Wallach, N.: Continuous Cohomology, discrete subgroups, and representations of reductive groups. Ann. of Math. Studies, Princeton University Press 1980Google Scholar
  4. 4.
    Casselman, W.: The Hasse-Weil ξ-function of some moduli varieties of dimension greater than one. Proc. of Symp. Pure Math.33, (T.2) 141–163 (1979)Google Scholar
  5. 5.
    Clemens, H.: Degenerations of Kähler manifolds. Duke Math. J.44, 215–290 (1977)Google Scholar
  6. 6.
    Deligne, P.: Théorie de Hodge I; Actes ICM Nice; t. I, p. 425–430, Gauthier-Villars 1970Google Scholar
  7. 7.
    Deligne, P.: Travaux de Shimura, Sem. Bourbaki 389. Lecture Notes, vol 244. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  8. 8.
    Deligne, P.: Travaux de Shimura (ursprüngliche Fassung); unveröffentlicht (1971)Google Scholar
  9. 9.
    Deligne, P.: La conjecture de Weil II; Pub. Math. IHES,52 (1981)Google Scholar
  10. 10.
    Deligne, P.: Les constantes des équations fonctionelles des fonctionsL. Lecture Notes, vol 349. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  11. 11.
    Drinfeld, V.G.: Coverings ofp-adic symmetric domains. Functional Anal. Appl.10, 107–115 (1976)Google Scholar
  12. 12.
    Flath, D.: Decomposition of representations into tensor products. Proc. Symp. Pure Math.33, (T.1) 179–183 (1979)Google Scholar
  13. 13.
    Gelbart, S., Jacquet, H.: Forms ofGL(2) from the analytic point of view. Proc. Sump. Pure Math.33, (T.1) 213–251 (1979)Google Scholar
  14. 14.
    Grothendieck A.: Sur quelques points d'algèbre homologique. Tohoku Math. J.9, 119–221 (1957)Google Scholar
  15. 15.
    Jacquet, H., Langlands, R.P.: Automorphic Forms onGL(2). Lecture Notes, vol. 114. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  16. 16.
    Kazhdan, D.: Connection of the dual space of a group with the structure of its closed subgroups. Funkt. Analysis and Its Applic.1, 63–65 (1967)Google Scholar
  17. 17.
    Kneser, M.: Lectures on Galois cohomology of classical groups. Tata Institute of Fundamental Research, Bombay 1969Google Scholar
  18. 18.
    Kottwitz, R.E.: Orbital integrals onGL 3. Am J. Math.102, 327–384 (1980)Google Scholar
  19. 19.
    Langlands, R.P.: On the classification of irreducible representations of real algebraic groups. Notes, IAS (1973)Google Scholar
  20. 20.
    Langlands, R.P.: On the zeta-functions of some simple Shimura varieties. Can. J. Math.31, 1121–1216 (1979)Google Scholar
  21. 21.
    Langlands, R.P.: Automorphic representations, Shimura varieties, and motives. Ein Märchen. (engl.). Proc. Symp. Pure Math.33, (T.2) 205–246 (1979)Google Scholar
  22. 22.
    Langlands, R.P.: Stable conjugacy: definitions and lemmas. Can. J. Math.31, 700–725 (1979)Google Scholar
  23. 23.
    Langlands, R.P.: Base Change forGL(2). Annals of Math. Studies, Princeton 1979Google Scholar
  24. 24.
    Langlands, R.P.: Shimura varieties and the Selberg Trace formula. Can. J. Math.29, 1292–1299 (1977)Google Scholar
  25. 25.
    Langlands, R.P.: Sur la mauvaise réduction d'une variété de Shimura. Astérisque65, 125–154 (1979)Google Scholar
  26. 26.
    Langlands, R.P.: Les débuts d'une formule de traces stable. Notes pour un cours donné à l'Ecole Normale des Jeunes Filles, 1980Google Scholar
  27. 27.
    Mumford, D.: An algebraic surface withK ample, (K 2)=9,p g=q=0. Am. J. Math.101, 233–244 (1979)Google Scholar
  28. 28.
    Mustafin, G.: Nonarchimedean uniformization. Math. USSR-Sb.34, 187–214 (1978)Google Scholar
  29. 29.
    Ono, T.: On Tamagawa numbers. Proc. Symp. Pure Math.9, 122–132 (1966)Google Scholar
  30. 30.
    Rapoport, M.: On the bad reduction of Shimura varieties associated to certain unitary groups. In VorbereitungGoogle Scholar
  31. 31.
    Rogawski, J.: An aplication of the building to orbital integrals. Comp. Mat.,42, 417–423 (1981)Google Scholar
  32. 32.
    Rogawski, J.: Automorphic forms on a unitary group in three variables. In VorbereitungGoogle Scholar
  33. 33.
    Schmid, W.: Variation of Hodge structures: the singularities of the period mapping, Invent. Math.22, 211–320 (1973)Google Scholar
  34. 34.
    Serre, J-P.: Facteurs, locaux des fonctions zéta des variétés algébriques (définitions et conjectures); Sem. Delange-Pisot-Poitou, 1970Google Scholar
  35. 35.
    Shelstad, D.: Characters and inner forms of a quasi-split group over ℝ. Comp. Math.39, 11–46 (1979)Google Scholar
  36. 36.
    Steenbrinck, J.: Limits of Hodge structures. Invent. Math.31, 229–257 (1976)Google Scholar
  37. 37.
    Tate, J.: Number theoretic background. Proc. Symp. Pure Math.33, (T.2) 3–26 (1979)Google Scholar
  38. 38.
    Wallach, N.: On the Selberg trace formula. Bull. AMS82, 171–195 (1976)Google Scholar
  39. 39.
    Zink, Th.: Über die schlechte Reduktion einer Shimuravarietät. Comp. Math. im Druck (1982)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • M. Rapoport
    • 1
  • Th. Zink
    • 2
  1. 1.Sonderforschungsbereich „Theoretische Mathematik”Universität BonnBonn 1
  2. 2.Institut für Mathematik der Akademie der Wissenschaften der DDRBerlin

Personalised recommendations