Inventiones mathematicae

, Volume 68, Issue 1, pp 1–19 | Cite as

Fixed points of periodic differentiable maps

  • Sylvain E. Cappell
  • Julius L. Shaneson


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atiyah, M.: K-Theory. New York: Benjamin 1976Google Scholar
  2. 2.
    Atiyah, M., Bott, R.: A Lefschetz fixed point formula for elliptic complexes: II. Applications. Ann. of Math.88, 451–491 (1968)Google Scholar
  3. 3.
    Atiyah, M., Hirzebruch, F.: Vector bundles and homogeneous spaces. Proc. Symposium in Pure Math., III, Amer. Math. Soc. 7–38 (1961)Google Scholar
  4. 4.
    Atiyah, M., Singer, I.: The index of elliptic operators III. Ann. of Math.87, 546–604 (1968)Google Scholar
  5. 5.
    Bredon, G.: Representations at fixed points of smooth actions of compact groups. Ann. of Math.89, 512–532 (1969)Google Scholar
  6. 6.
    Bredon, G.: Introduction to compact transformation groups. New York: Academic Press 1972Google Scholar
  7. 7.
    Browder W.: Homotopy types of differentiable manifolds. In: Colloq on Alg. Top, pp. 42–46. Aarhus: Notes 1962Google Scholar
  8. 8.
    Browder, W.: Surgery of simply-connected manifolds. New York: Springer 1972Google Scholar
  9. 9.
    Browder, W., Livesay, G.R.: Fixed point free involutions on homotopy spheres. Bull. Amer. Math. Soc.73, 242–245 (1967)Google Scholar
  10. 10.
    Cappell, S.E., Shaneson, J.L.: Pseudo-free group actions I. In: Algebraic Topology. Aarhus: 1978; Lecture Notes in Math, vol. 763, pp. 395–447. Berlin-Heidelberg-New York: Springer 1979Google Scholar
  11. 11.
    Cappell, S.E., Shaneson, J.L.: Linear algebra and topology. Bull. Amer. Math. Soc. New Series1, 685–867 (1979)Google Scholar
  12. 12.
    Cappell, S.E., Shaneson, J.L.: Nonlinear similarity of matrices. Bull. Amer. Math. Soc. New Series1, 899–902 (1979)Google Scholar
  13. 13.
    Cappell, S.E., Shaneson, J.L.: Nonlinear similarity. Annals of Math.113, 315–355 (1981)Google Scholar
  14. 14.
    Cappell, S.E., Shaneson, J.L.: Fixed points of periodic differentiable maps, Proc. Matl. Acad. Sci. USA77, 5052–5054 (1980)Google Scholar
  15. 15.
    Cappell, S.E., Shaneson, J.L.: Matrices, topology, and elementary number theory. To appearGoogle Scholar
  16. 16.
    Cappell, S.E., Shaneson, J.L.: Some new 4-manifolds. Ann. of Math.104, 61–72 (1976)Google Scholar
  17. 17.
    Cappell, S.E., Shaneson, J.L.: Topological rationality of linear representations. Publications de L'Institute des Hautes Etudes Scientifiques. In press (1982)Google Scholar
  18. 18.
    Cappell, S.E., Shaneson, J.L.: Nonlinear similarity and linear similarity are equivalent below dimension 6 to appearGoogle Scholar
  19. 19.
    Cappell, S.E., Shaneson, J.L.: The geometry of representations of groups and subgroups. Amer. J. of Math. (1981) in pressGoogle Scholar
  20. 20.
    Cappell, S.E., Shaneson, J.L.: Class numbers of cyclotomic fields and differentiable periodic maps. To appearGoogle Scholar
  21. 21.
    Illman, S.: Recognition of linear actions on spheres. In press (1982)Google Scholar
  22. 22.
    Fujii, K., Kobayashi, T., Shimomura, K., Sugarauara, M.:KO-Groups of lens spaces modulo powers of 2. Hiroshima Math. J.8, 469–489 (1978)Google Scholar
  23. 23.
    Kobayashi, T., Sugarawa, M.:K A-Rings of lens spacesL n(4). Hiroshima Math. J.1, 253–271 (1971)Google Scholar
  24. 24.
    Kobayashi, T., Sugarawa, M.: On stable homotopy of stunted lens spaces II. Hiroshima Math. J.7, 689–705 (1977)Google Scholar
  25. 25.
    Milnor, J.W.: Whitehead torsion. Bull. Amer. Math. Soc.72, 358–426 (1966)Google Scholar
  26. 26.
    Novikov, S.P.: Homotopy equivalent smooth manifolds I. Izv. Akad. Nauk SSSR. Ser. Math.28 (2), 365–474 (1964); Translations Amer. Math. Soc.48, 271–396 (1965)Google Scholar
  27. 27.
    Petrie, T.: The Atiyah-Singer invariant, the Wall groupL n(π, 1), and the functionte x+1/te x−1. Ann. of Math.92, 174–187 (1970)Google Scholar
  28. 28.
    Petrie, T.:G-Survery I. Lecture Notes, vol. 664, pp. 196–232. Berlin-Heidelberg-New York: Springer 1978Google Scholar
  29. 29.
    Petrie, T.: Three theorems on transformation groups. In: Algebraic topology. Aarhus: 1978; Lecture Notes in Math. vol. 763, pp. 549–572. Berlin-Heidelberg-New York: Springer 1979Google Scholar
  30. 30.
    Sanchez, C.: Actions of groups of odd order on compact, orientable manifolds. Proc. Amer. Math. Soc.54, 445–448 (1976)Google Scholar
  31. 31.
    Szcarba, R.: On tangent bundles of fibre spaces and quotient spaces. Amer. J. Math.86, 685–697 (1964)Google Scholar
  32. 32.
    Smith, P.A.: New results and old problems in finite transformation groups. Bull. Amer. Math. Soc.66, 401–415 (1960)Google Scholar
  33. 33.
    Sullivan, D.: Triangulating and smoothing homotopy equivalences and homeomorphisms. Geometric Topology Seminar Notes, Princeton Univ. Math. Dept. 1967Google Scholar
  34. 34.
    Wall, C.T.C.: Surgery on compact manifolds. New York: Academic Press 1970Google Scholar
  35. 35.
    Wall, C.T.C.: Classification of, Hermitian forms, VI, Group Rings. Ann. of Math.103, 1–80 (1976)Google Scholar
  36. 36.
    Yasuo, M.: γ-dimensional and products of lens spaces. Mem. Fac. Sci. Kyushu Univ. Ser. A, Math.31, 113–126 (1977)Google Scholar
  37. 37.
    Yasuo, M.: On theKO-cohomology of the lens spaceL n (q) forq even. Mem. Fac. Sci. Kyushu Univ. Ser. A. Math.32, 153–164 (1978)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Sylvain E. Cappell
    • 1
    • 2
  • Julius L. Shaneson
    • 1
    • 2
  1. 1.Courant InstituteNew York
  2. 2.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations