Inventiones mathematicae

, Volume 95, Issue 1, pp 31–61 | Cite as

Extending proper holomorphic mappings of positive codimension

  • Franc Forstnerič

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, H.: Holomorphic mappings from the ball and polydisc. Math. Ann.209, 249–256 (1974)Google Scholar
  2. 2.
    Baouend, M.S., Rothschild, L.P.: Germs of CR maps between real-analytic hypersurfaces. Preprint 1987Google Scholar
  3. 3.
    Baouendi, M.S., Treves, F.: About the holomorphic extension of CR functions on real hypersurfaces in complex space. Duke Math. J.51, 77–107 (1984)Google Scholar
  4. 4.
    Baouendi, M.S., Bell, S., Rothschild, L.P.: CR mappings of finite multiplicity and extension of proper holomorphic mappings. Bull. Am. Math. Soc.16, 265–270 (1987)Google Scholar
  5. 5.
    Baouendi, M.S., Jacobowitz, H., Treves, F.: On the analiticity of CR mappings. Ann. Math.122, 365–400 (1985)Google Scholar
  6. 6.
    Bedford, E., Bell, S.: Extension of proper holomorphic mappings past the boundary. Manuscr. Math.50, 1–10 (1985)Google Scholar
  7. 7.
    Bell, S., Catlin, D.: Boundary regularity of proper holomorphic mappings. Duke Math. J.49, 385–396 (1982)Google Scholar
  8. 8.
    Bell, S., Catlin, D.: Regularity of CR mappings. Preprint 1987Google Scholar
  9. 9.
    Bochner, S., Martin, W.T.: Several complex variables. Princeton: Princeton University Press 1948Google Scholar
  10. 10.
    Cartan, H.: Calculus différentiel. Paris: Hermann 1967Google Scholar
  11. 11.
    Cima, J., Suffridge, T.J.: A reflection principle with applications to proper holomorphic mappings. Math. Ann.265, 489–500 (1983)Google Scholar
  12. 12.
    Cima, J., Suffridge, T.J.: Proper holomorphic mappings from the two-ball to the three-ball. Preprint 1987Google Scholar
  13. 13.
    Cima, J., Krantz, S., Suffridge, T.J.: A reflection principle for proper holomorphic mappings of strictly pseudoconvex domains and applications. Math. Z.186, 1–8 (1984)Google Scholar
  14. 14.
    Čirka, E.M.: Complex analytic varieties. (Russian). Nauka, Moskva 1985Google Scholar
  15. 15.
    D'Angelo, J.: Real hypersurfaces, orders of contact, and applications. Ann. Math.115, 615–637 (1982)Google Scholar
  16. 16.
    D'Angelo, J.: Proper holomorphic maps between balls of different dimensions. Preprint 1987Google Scholar
  17. 17.
    D'Angelo, J.: Polynomial proper maps between balls. Preprint 1987Google Scholar
  18. 18.
    Derridj, M.: Le principe de réflexion en des points de faible pseudoconvexité, pour des applications holomorphes propres. Invent. Math.79, 197–215 (1985)Google Scholar
  19. 19.
    Diederich, K., Fornæss, J.E.: Boundary regularity of proper holomorphic mappings. Invent. Math.67, 363–384 (1982)Google Scholar
  20. 20.
    Diederich, K., Fornæss, J.E.: Pseudoconvex domains: Existence of Stein neighborhoods. Duke Math. J.44, 641–661 (1977)Google Scholar
  21. 21.
    Diederich, K., Fornæss, J.E.: Proper holomorphic mappings between real-analytic pseudoconvex domains inC n. Preprint 1987Google Scholar
  22. 22.
    Diederich, K., Webster, S.M.: A reflection principle for degenerate real hypersurfaces. Duke Math. J.47, 835–843 (1980)Google Scholar
  23. 23.
    Dor, A.: Proper holomorphic maps from strongly pseudoconvex domains inC 2 to the unit ball inC 3 and boundary interpolation by proper holomorphic maps. Preprint 1987Google Scholar
  24. 24.
    Faran, J.J.: Maps from the two-ball to the three-ball. Invent. Math.68, 441–475 (1982)Google Scholar
  25. 25.
    Faran, J.J.: On the linearity of proper maps between balls in the low dimensional case. J. Differ. Geom.24, 15–17 (1986)Google Scholar
  26. 26.
    Fefferman, C.: The Bergman kernel and biholomorphic mappings pseudo-convex domains. Invent. Math.26, 1–65 (1974)Google Scholar
  27. 27.
    Forstnerič, F.: Embedding strictly pseudoconvex domains into balls. Trans. Am. Math. Soc.295, 347–368 (1986)Google Scholar
  28. 28.
    Forstnerič, F.: Proper holomorphic maps from balls. Duke Math. J.53, 427–440 (1986)Google Scholar
  29. 29.
    Forstneriĉ, F.: On the boundary regularity of proper holomorphic mappings. Ann. Sc. Norm. Super. Pisa, Cl. Sci, IV. Ser.13, 109–128 (1986)Google Scholar
  30. 30.
    Globevnik, J.: Boundary interpolation by proper holomorphic maps. Math. Z.194, 365–374 (1987)Google Scholar
  31. 31.
    Gunning, R., Rossi, H.: Analytic functions of several complex variables. Englewood Cliffs: Prentice Hall 1965Google Scholar
  32. 32.
    Halim, M.: Applications holomorphes propres continues de domaines stridctement pseudoconvexes deC n dans la boule unitéC n+1. Preprint 1987Google Scholar
  33. 33.
    Han, C.K.: Analyticity of C.R. equivalence between some real hypersurfaces inC n, with degenerate Levi form. Invent. Math.73, 51–69 (1983)Google Scholar
  34. 34.
    Lewy, H.: On the boundary behavior of holomorphic mappings. Acad. Naz. Lincei35, 1–8 (1977)Google Scholar
  35. 35.
    Løw, E.: Embeddings and proper holomorphic maps of strictly pseudoconvex domains into polydiscs and balls. Math. Z.190, 401–410 (1985)Google Scholar
  36. 36.
    Malgrange, B.: Ideals of differentiable functions. Oxford-London: Oxford University Press 1966Google Scholar
  37. 37.
    Nirenberg, L., Webster, S., Yang, P.: Local boundary regularity of holomorphic mappings. Commun. Pure Appl. Math.33, 305–338 (1980)Google Scholar
  38. 38.
    Pinĉuk, S.I.: On the analytic continuation of biholomorphic mappings. Mat. Sb. USSR,98, [18], 416–435, (1975); Math. USSR, Sb.27, 375–392 (1975)Google Scholar
  39. 39.
    Pinĉuk, S.I.: A boundary uniqueness theorem for holomorphic functions of several complex variables. Mat. Zam.15, 205–212 (1974); Math. Notes, USSR15, 116–120 (1974)Google Scholar
  40. 40.
    Pinĉuk, S.I.: Holomorphic mappings of real-analytic hypersurfaces. Mat. USSR, Sb.105, 574–593 (1978); Math. USSR. Sb.34, 503–519 (1978)Google Scholar
  41. 41.
    Poincaré, H.: Les fonctions analytiques de deux variables et la représentation conforme. Rend. Circ. Mat. Palermo. II. Ser.23, 185–220 (1907)Google Scholar
  42. 42.
    Rudin, W.: Function theory on the unit ball ofC n. Berlin-Heidelberg-New York: Springer 1980Google Scholar
  43. 43.
    Segre, B.: Intorno al problem di Poincaré della rappresentazione pseudo-conform. Rend. Accad. Lincei13, 676–683 (1931)Google Scholar
  44. 44.
    Tanaka, N.: On the pseudo-conformal geometry of hypersurfaces of the space ofn complex variables. J. Math. Soc. Japan14, 397–429 (1962)Google Scholar
  45. 45.
    Trépreau, J.M.: Sur le prolongement des fonctionsCR definis sur une hypersurface réele de classeC 2 dansC n. Invent. Math.83, 583–592 (1986)Google Scholar
  46. 46.
    Vitushkin, A.G.: Real-analytic hypersurfaces in complex manifolds. Usp. Mat. Nauk40, 3–31 (1985); Russ. Math. Surv.40, 1–35 (1985)Google Scholar
  47. 47.
    Webster, S.M.: On the mapping problem for algebraic real hypersurfaces. Invent. Math.43, 53–68 (1977)Google Scholar
  48. 48.
    Webster, S.M.: On mapping ann-ball into an (n+1)-ball in complex space. Pac. J. Math.81, 267–272 (1979)Google Scholar
  49. 49.
    Webster, S.M.: On the reflection principle in several complex variables. Proc. Am. Math. Soc.71, 26–28 (1978)Google Scholar
  50. 50.
    Whitney, H.: Complex analytic varieties. Reading: Addison-Wesley 1972Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Franc Forstnerič
    • 1
  1. 1.Institut Mittag-LefflerDjursholmSweden
  2. 2.Institute of MathematicsLjubljanaYugoslavia

Personalised recommendations