Inventiones mathematicae

, Volume 68, Issue 2, pp 275–316 | Cite as

When are topologically equivalent orthogonal transformations linearly equivalent?

  • W. -c. Hsiang
  • William Pardon


Orthogonal Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, D.R.: A note on the Whitehead torsion of a bundle modulo a subbundle. Proc. AMS32, 593–595 (1972)Google Scholar
  2. 2.
    Anderson, D.R.: The Whitehead torsion of the total space of a fibre bundle. Topology11, 179–194 (1972)Google Scholar
  3. 3.
    Anderson, D.R.: Obstruction to the finiteness of the total space of a flat bundle. Am. J. Math.95, 281–293 (1973)Google Scholar
  4. 4.
    Anderson, D.R., Hsiang, W.-C.: Extending combinatorialPL structures on stratified spaces. Invent. Math.32, 179–204 (1976)Google Scholar
  5. 5.
    Anderson, D.R., Hsiang, W.-C.: the functorsK −1 and pseudo-isotopies of polyhedra. Ann. of Math.105, 201–233 (1977)Google Scholar
  6. 6.
    Anderson, D.R., Hsiang, W.-C.: Extending combinatorial piecewise linear structures on stratified spaces II. Trans. Am. Math. Soc.260, 223–253 (1980)Google Scholar
  7. 7.
    Atiyah, M., Bott, R.: A Lefshetz fixed point formula for elliptic complexes II: applications. Ann. of Math.88, 451–491 (1968)Google Scholar
  8. 8.
    Atiyah, M., Singer, I.: The index of elliptic operators III. Ann. of Math.87, 546–604 (1968)Google Scholar
  9. 9.
    Bass, H.: AlgebraicK-Theory. Benjamin 1968Google Scholar
  10. 10.
    Bredon, G.: Introduction to Compact Transformation Groups. New York: Academic Press 1972Google Scholar
  11. 11.
    Cappell, S., Shaneson, J.: Non-linear similarity. Ann. of Math.113, 315–355 (1981)Google Scholar
  12. 12.
    Cohen, M.M.: A general theory of relative regular neighborhoods. Trans. AMS136, 189–231 (1969)Google Scholar
  13. 13.
    Conner, P., Floyd, E.: Maps of odd period. Ann. of Math.84, 132–156 (1966)Google Scholar
  14. 14.
    de Rham, G.: Reidemeister's torsion invariant and rotations ofS n, differential analysis, pp. 27–36. Oxford: Oxford University Press, 1964Google Scholar
  15. 15.
    de Rham, G.: Sur les nouveaux invariants topologiques de M. Reidemeister. Recueil Math. (T.1)43, 737–743 (1935)Google Scholar
  16. 16.
    Donelly, H., Patodi, V.: Spectrum and the fixed point sets of isometries II. Topology16, 1–11 (1977)Google Scholar
  17. 17.
    Gilmer, P.: Topological proof of theG-signature theorem forG finite. preprintGoogle Scholar
  18. 18.
    Illman, S.: Equivariant algebraic topology. Ph. D. Thesis, Princeton University 1972Google Scholar
  19. 19.
    Kuiper, N., Robbin, J.W.: Topological classification of linear endomorphisms. Invent. Math.19, 83–106 (1973)Google Scholar
  20. 20.
    Lal, V.: The Wall obstruction of a fibration. Invent. Math.6, 67–77 (1968)Google Scholar
  21. 21.
    Lashof, R., Rothenberg, M.:G-smoothing theory. Proc. Symp. Pure Math., Vol. 32, pp. 211–266. AMS, Providence 1971Google Scholar
  22. 22.
    May, J.P.: Simplicial objects in algebraic topology. Van Nostrand, Princeton 1967Google Scholar
  23. 23.
    Milnor, J.: Whitehead torsion. Bull. AMS72, 358–426 (1966)Google Scholar
  24. 24.
    Morgan, J., Sullivan, D.: The transversality characteristic class and linking cycles in surgery theory. Ann. of Math.99, 463–544 (1974)Google Scholar
  25. 25.
    Rourke, C., Sanderson, B.: Δ-sets I: homotopy theory. Q. J. Math., Oxford22, 321–338 (1971)Google Scholar
  26. 26.
    Rourke, C., Sanderson, B.: Δ-sets II: Block bundles. Q. J. Math. Oxford22, 465–485 (1971)Google Scholar
  27. 27.
    Serre, J-P.: Représentations linéaires des groupes fines. Paris: Hermann 1971Google Scholar
  28. 28.
    Schultz, R.: On the topological classification of linear representations. Topology16, 263–270 (1977)Google Scholar
  29. 29.
    Siebenmann, L.: Deformation of homeomorphisms on stratified sets. Comm. Math. Helv.47, 123–163 (1972)Google Scholar
  30. 30.
    Siebenmann, L.: A total Whitehead torsion obstruction. Comment. Math. Helv.45, 1–48 (1970)Google Scholar
  31. 31.
    Siebenmann L.: Infinite simple homotopy types. Indag. Math.32, 479–495 (1970)Google Scholar
  32. 32.
    Siebenmann, L.: The obstruction to finding a boundary for an open manifold of dimension greater than five. Ph. D. Thesis, Princeton University 1965Google Scholar
  33. 33.
    Siebenmann, L.: Topological manifolds, Actes Congres Int. Math. 1970, vol. 2, Gauthier-Villars, 133–163Google Scholar
  34. 34.
    Stallings, J.: On infinite processes leading to differentiability in the complement of a point, Differential and combinatorial topology, pp. 245–254. Princeton: Princeton U. Press 1965Google Scholar
  35. 35.
    Wall, C.T.C.: Surgery on compact manifolds. New York-London: Academic Press 1970Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • W. -c. Hsiang
    • 1
  • William Pardon
    • 2
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Department of MathematicsDuke UniversityDurhamUSA

Personalised recommendations