Advertisement

Inventiones mathematicae

, Volume 96, Issue 1, pp 205–230 | Cite as

Opérations sur l'homologie cyclique des algèbres commutatives

  • Jean-Louis Loday
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-T] Atiyah, M.F., Tall, D.O.: Group representations, λ-rings and theJ-homomorphism. Topology8, 253–297 (1969)Google Scholar
  2. [B] Barr, M.: Harrison homology, Hochschild homology and triples. J. Algebra8, 314–323 (1968)Google Scholar
  3. [B-V] Burghelea, D., Vigué-Poirrier, M.: Cyclic homology of commutative algebras I, Proc. Louvainla-Neuve (1986) (Lecture Notes in Maths, Vol. 1318)., pp. 51–72. Berlin-Heidelberg-New York: Springer 1988Google Scholar
  4. [C1] Connes, A.: Cohomologie cyclique et foncteurs Extn. C.R. Acad. Sci. Paris296, 953–958 (1983)Google Scholar
  5. [C2] Connes, A.: Non commutative differential geometry. Publ. Math., Inst. Hautes Etud. Sci.62, 257–360 (1985)Google Scholar
  6. [F] Foata, D.: Communication personnelleGoogle Scholar
  7. [F-S] Foata, D., Schützenberger, M.-P.: Théorie géométrique des polynômes eulériens. Lecture Notes in Maths., Vol. 138). Berlin-Heidelberg-New York: Springer 1970Google Scholar
  8. [F-T] Feigin, B.L., Tsygan, B.L.: AdditiveK-theory. In:K-theory, arithmetic and geometry. (Lecture Notes in Maths., Vol. 1289, pp. 97–209). Berlin-Heidelberg-New York: Springer 1987Google Scholar
  9. [G-S] Gerstenhaber, M., Schack, S.D.: A Hodge-type decomposition for commutative algebra cohomology. J. Pure Appl. Algebra48, 229–247 (1987)Google Scholar
  10. [G] Grothendieck, A.: Classes de faisceaux et théorème de Riemann-Roch, dans SGA 6. (Lecture Notes Maths., Vol. 225, pp. 20–77). Berlin-Heidelberg-New York: Springer 1971Google Scholar
  11. [L-P] Loday, J.-L., Procesi, C.: Cyclic homology and lambda operations. Proc. Lake Louise Conf. Canada (to appear)Google Scholar
  12. [L-Q] Loday, J.-L., Quillen, D.: Cyclic homology and the Lie algebra homology of matrices. Comment. Math. Helv.59, 565–591 (1984)Google Scholar
  13. [L1] Loday, J.-L.: Homologies diédrale et quaternionique. Adv. Math.66, 119–148 (1987)Google Scholar
  14. [L2] Loday, J.-L.: Partition eulérienne et opérations en homologie cyclique. C.R. Acad. Sci. Paris307, 283–286 (1988)Google Scholar
  15. [V] Vigué-Roirrier, M.: Cyclic homology and Quillen homology of a commutative algebra, Proc. Louvain-la-Neuve 1986 (Lect. Notes Math., Vol. 1318, pp. 238–245) Berlin Heidelberg New York: Springer 1988Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Jean-Louis Loday
    • 1
  1. 1.Institut de Recherche Mathématique AvancéeUniversité Louis Pasteur et CNRS (UA 001)StrasbourgFrance

Personalised recommendations