Inventiones mathematicae

, Volume 96, Issue 1, pp 103–176 | Cite as

The unitary dual for complex classical Lie groups

  • Dan Barbasch
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arthur, J.: On some problems suggested by the trace formula. (Lect. Notes in Math., Vol. 1041, pp. 1–50) Berlin-Heidelberg-New York: Springer 1984Google Scholar
  2. [BV1] Barbasch, D., Vogan, D.: Unipotent representations of complex semisimple Lie groups. Ann. Math.121, 41–110 (1985)Google Scholar
  3. [BV2] Barbasch, D., Vogan, D.: Primitive ideals and orbital integrals in complex classical groups. Math. Ann.259, 153–199 (1982)Google Scholar
  4. [BV3] Barbasch, D., Vogan, D.: Primitive ideals and orbital integrals in complex exceptional groups. J. Algebra80, 350–382 (1983)Google Scholar
  5. [BG] Bernstein, I.N., Gelfand, S.I.: Tensor products of finite and infinite dimensional representations of semisimple Lie algebras. Compos. Math.41, 245–285 (1980)Google Scholar
  6. [BC] Boe, B., Collingwood, D.: A multiplicity one theorem for holomorphically induced modules. Math. Z.192, 265–282 (1986)Google Scholar
  7. [Bou] Bourbaki, N.: Groupes et algebres de Lie. Paris Hermann 1968Google Scholar
  8. [D1] Duflo, M.: Representations irreductibles des groupes semisimples complexes. (Lect. Notes in Math., Vol. 497, pp. 26–88). Berlin-Heidelberg-New York: Springer 1975Google Scholar
  9. [D2] Duflo, M.: Representations unitaires irreducibles des groupes semisimples complexes de rang deux. Bull. Soc. Math. France107, 55–96 (1979)Google Scholar
  10. [E] Enright, T.: Relative Lie algebra cohomology and unitary representations of complex semisimple Lie groups. Duke Math. J.46, 513–525 (1979)Google Scholar
  11. [ES] Enright, T., Shelton, B.: Categories of highest weight modules: applications to classical hermitian pairs. Mem. Am. Math. Soc. (to appear)Google Scholar
  12. [J] Joseph, A.: Dixmier's problem for Verma and principal series submodules. J. London Math. Soc.20, 193–204 (1979)Google Scholar
  13. [KP] Kraft, H., Procesi, C.: On the geometry of conjugacy classes in classical groups. Comment. Math. Helv.57, 539–601 (1982)Google Scholar
  14. [KZ] Knapp, A., Zuckerman, G.: Classification theorems for representations of semisimple Lie groups. (Lect. Notes in Math., Vol. 587, pp. 138–159) Berlin-Heidelberg-New York: Springer 1976Google Scholar
  15. [L] Lusztig, G.: Characters of reductive groups over a finite field. Ann. Math. Stud.107, 1–384 (1984)Google Scholar
  16. [SV] Speh, B., Vogan, D.: Reducibility of generalized principal series representations. Acta Math.145, 227–299 (1980)Google Scholar
  17. [V1] Vogan, D.: Representations of real reductive Lie groups. Boston: Birkhäuser 1981Google Scholar
  18. [V2] Vogan, D.: Unitarizability of certain series of representations. Ann. Math.120, 141–187 (1984)Google Scholar
  19. [V3] Vogan, D.: The unitary dual ofGL(n). Invent. Math.83, 449–505 (1986)Google Scholar
  20. [V4] Vogan, D.: Irreducible characters of semisimple Lie groups III, proof of the Kazhdan-Lusztig conjectures in the integral case. Invent. Math.71, 381–417 (1983)Google Scholar
  21. [Z] Zuckerman, G.: Tensor products of finite and infinite dimensional representations of semisimple Lie groups. Ann. Math.106, 295–308 (1977)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Dan Barbasch
    • 1
  1. 1.Department of MathematicsRutgers State UniversityNew BrunswickUSA

Personalised recommendations