Inventiones mathematicae

, Volume 96, Issue 1, pp 1–69 | Cite as

Higher regulators and HeckeL-series of imaginary quadratic fields I

  • Christopher Deninger
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A] Adams, J.F.: On the groupsJ(X) II. Topology3, 137–171 (1965)Google Scholar
  2. [Be1] Beilinson, A.A.: Higher regulators and values ofL-functions of curves. Funct. Anal. Appl.14, 116–118 (1980)Google Scholar
  3. [Be2] Beilinson, A.A.: Higher regulators and values ofL-functions. J. Sov. Math.30, 2036–2070 (1985)Google Scholar
  4. [Be3] Beilinson, A.A.: Higher regulators of modular curves. Contemp. Math.55 (I) 1–34 (1986)Google Scholar
  5. [Be4] Beilinson, A.A.: Notes on absolute Hodge cohomology. Contemp. Math.55, (I) 35–68 (1986)Google Scholar
  6. [Bl1] Bloch, S.: AlgebraicK-theory and zeta functions of elliptic curves. Proc. Int. Cong. of Math., Helsinki, pp. 511–515 (1978)Google Scholar
  7. [Bl2] Bloch, S.: Lectures on algebraic cycles. Duke Univ. Math. series, lectures 8, 9 (1981)Google Scholar
  8. [Bl3] Bloch, S.: Algebraic cycles and higherK-theory. Adv. Math.61, 267–304 (1986)Google Scholar
  9. [Bl4] Bloch, S.: Algebraic cycles and the Beilinson conjectures. Contemp. Math.58, (I) 65–79 (1986)Google Scholar
  10. [Bl-G] Bloch, S., Grayson, D.:K 2 andL-functions of elliptic curves. Computer calculations. Contemp. Math.55, (I) 79–88 (1986)Google Scholar
  11. [Bo] Borel, A.: Stable real cohomology of arithmetic groups. Ann. Sci. Ec. Norm. Super., IV. Ser.7, 235–272 (1974)Google Scholar
  12. [C-Sh] Coleman, R., de Shalit, E.:p-adic regulators on curves and special values ofp-adicL-functions. Invent. Math.93, 239–266 (1988)Google Scholar
  13. [Co] Colmez, P.: Valeurs spéciales de fonctionsL attachées à des charactères de Hecke de typeA 0 d'une extension d'un corps quadratique imaginaire. ThèseGoogle Scholar
  14. [D1] Deligne, P.: Valeurs de fonctionsL et périodes d'intégrales. Proc. Symp. Pure Math.33, (2) 313–346 (1979)Google Scholar
  15. [D2] Deligne, P.: Théorie de Hodge II. Publ. Math., Inst. Hautes Etud. Sci.40, 5–57 (1972)Google Scholar
  16. [De-W] Deninger, C., Wingberg, K.: On the Beilinson conjectures for elliptic curves with complex multiplication. In: Rapoport, M., Schappacher, N., Schneider, P. (eds.) Beilinson's conjectures on special values ofL-functions. (Perspectives in Math., Vol. 4.) Boston-New York: Academic Press 1988Google Scholar
  17. [De] Deninger, C.: Higher regulators of elliptic curves with complex multiplication. To appear in: Séminaire de Théorie de nombres, edited by Ch. Goldstein, Paris 1986/87Google Scholar
  18. [E-V] Esnault, H., Viehweg, E.: Deligne-Beilinson cohomology. In: Rapoport, M., Schappacher, N., Schneider, P. (eds.) Beilinson's conjectures on special values ofL-functions. (Perspectives in Math., Vol. 4.) Boston-New York: Academic Press 1988Google Scholar
  19. [F] Fujiki, A.: Duality of mixed Hodge structures of algebraic varieties. Publ. Res. Inst. Math. Sci.16, 635–667 (1980)Google Scholar
  20. [G-Sch] Goldstein, Ch., Schappacher, N.: Séries d'Eisenstein et fonctionsL de courbes elliptiques à multiplication complexe. J. Reine Angew. Math.327, 184–218 (1981)Google Scholar
  21. [Gr] Gross, B.: Arithmetic on elliptic curves with complex multiplication. (Lect. Notes Math., Vol. 776). Berlin-Heidelberg-New York: Springer 1980Google Scholar
  22. [G, SGA1] Grothendieck, A., Raynaud, M.: Revêtements étales et groupe fondamental, SGA 1. (Lect. Notes Math., Vol. 224.) Berlin-Heidelberg-New York: Springer 1971Google Scholar
  23. [J] Jannsen, U.: Deligne homology, Hodge 68-1, and motives. In: Rapoport, M., Schappacher, N., Schneider, P. (eds.) Beilinson's conjectures on special values ofL-functions. (Perspectives in Math., Vol. 4.) Boston-New York: Academic Press 1988Google Scholar
  24. [K] Kato, K.: A Hasse principle for two dimensional global fields. J. Reine Angew. Math.366, 142–181 (1986)Google Scholar
  25. [L] Lang, S.: Elliptic functions. New York: Addison-Wesley (1973)Google Scholar
  26. [Ma] Manin, Y.I.: Correspondences, motives and monoidal transformations. Mat. Sbor.77, 475–507 (1970) (AMS Transl.)Google Scholar
  27. [Mi] Milne, J.S.: On the arithmetic of abelian varieties. Invent. Math.17, 177–190 (1972)Google Scholar
  28. [Ro] Rohrlich, D.: Elliptic curves and values ofL-functions. In: Kisilevsky, H., Labute, J. (eds) Proc. of the CMS summer school on algebraic number theory. Montreal (1985)Google Scholar
  29. [Sch] Schneider, P.: Introduction to the Beilinson conjectures. In: Rapoport, M., Schappacher, N., Schneider, P. (eds.) Beilinson's conjectures on special values ofL-functions. (Perspectives in Math., Vol. 4.) Boston-New York: Academic Press 1988Google Scholar
  30. [S-T] Serre, J.P., Tate, J.: Good reduction of abelian varieties. Ann. Math.88, 492–517 (1968)Google Scholar
  31. [Sh] Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Princeton: Princeton University Press 1971Google Scholar
  32. [So1] Soulé, Ch.: Opérations enK-théorie algébrique. Can. J. Math.37, 488–550 (1985)Google Scholar
  33. [So2] Soulé, Ch.: Régulateurs. Séminaire Bourbaki 37 ème année no 644 (1984/85)Google Scholar
  34. [So3] Soulé, Ch.:p-adicK-theory of elliptic curves. Duke Math. J.54, 249–269 (1987)Google Scholar
  35. [Sp] Spivak, M.: Differential geometry I. Publish or Perish (1970)Google Scholar
  36. [Ta] Tamme, G.: The theorem of Riemann-Roch. In: Rapoport, M., Schappacher N., Schneider, P. (eds.) Beilinson's conjectures on special values ofL-functions. (Perspectives in Math., Vol. 4.) Boston-New York: Academic Press 1988Google Scholar
  37. [T] Tate, J.: On Fourier analysis in number fields and Hecke's zeta function. In: Cassels, J.W.S., Fröhlich, A. (eds.) (Algebraic Number Theory). Washington D.C.: Thompsen Book Comp. Inc. 1967Google Scholar
  38. [W1] Weil, A.: Variétés Abéliennes et Courbes Algébriques. Paris: Hermann 1948Google Scholar
  39. [W2] Weil, A.: Elliptic functions according to Eisenstein and Kronecker, Berlin-Heidelberg-New York: Springer 1976Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Christopher Deninger
    • 1
  1. 1.Fakultät für MathematikUniversität RegensburgRegensburgFederal Republic of Germany

Personalised recommendations