Inventiones mathematicae

, Volume 95, Issue 2, pp 379–394

Homotopy invariants of links

  • Kent E. Orr
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B] Bousfield, A.: Homological localization towers for groups and Π-modules. Mem. Am. Math. Soc.: 186, 1977Google Scholar
  2. [BK] Bousfield, A., Kan, D.: Homotopy limits, completions, and localizations. (Lecture Notes in Mathematics, Vol. 304). Berlin-Heidelberg-New York: Springer 1972Google Scholar
  3. [Br] Brown, K.S.: Cohomology of groups. (Graduate Texts in Math. Vol. 87). Berlin-Heidelberg-New York: Springer 1982Google Scholar
  4. [CS] Cappell, S., Shaneson, J.L.: Link cobordism. Comment. Math. Helv.55, 20–49 (1980)Google Scholar
  5. [Ch] Chen, K.T.: Isotopy invariants of links. Ann. Math.56(2), 44–55 (1952)Google Scholar
  6. [C1] Cochran, T.D.: Derivatives of links: Milnor's invariants and massey products. Mem. Am. Math. Soc., to appearGoogle Scholar
  7. [C2] Cochran, T.D.: Link concordance invariants and homotopy theory. Invent. Math.90, 635–645 (1987)Google Scholar
  8. [D] Dwyer, W.G.: Homology, Massey products and maps between groups. J. Pure Appl. Algebra6, 177–190 (1975)Google Scholar
  9. [F1] Freedman, M.H.: A new technique for the link slice problem. Invent. Math.80, 453–465 (1985)Google Scholar
  10. [F2] Freedman, M.H.: Are the Borromean ringsA-B slice. Topology Appl. (in press)Google Scholar
  11. [FL] Freedman, M.H., Lin, X.S.: On theA-B slice problem. Preprint. University of California, San Diego La Jolla, CaliforniaGoogle Scholar
  12. [G] Gruenberg, K.W.: Cohomological topics in group theory. (Lecture Notes in Mathematics. Vol. 143) Berlin-Heidelberg-New York: Springer 1970Google Scholar
  13. [MKS] Magnus, W., Karrass, A., Solitar, D.: Combinitorial group theory. New York: Interscience Publishers 1976Google Scholar
  14. [Ma 1] Massey, W.S.: Some higher order cohomology operations. Symposium International de Topologia Algebraica Mexico City (1958) pp. 145–154Google Scholar
  15. [Ma 2] Massey, W.S.: Higher order linking numbers. Proceedings on conference on algebraic topology; Univ. Illinois, Chicago Circle (1968)Google Scholar
  16. [M1] Milnor, J.: Link groups. Ann. Math.2, 177–195 (1954)Google Scholar
  17. [M2] Milnor, J.: Isotopy of links. (Algebraic Geometry and Topology: A Symposium in Honor of S. Lefschetz, pp. 280–386). Princeton, NJ: Princeton University Press 1957Google Scholar
  18. [On] O'Neill, E.J.: Higher order Massey products and links. Trans. Am. Math. Soc.248, 37–66 (1979)Google Scholar
  19. [O] Orr, K.: New link invariants and applications. Commen. Math. Helv.62, 542–560 (1987)Google Scholar
  20. [P] Porter, R.: Milnor's μ-invariants and Massey products. Trans. Am. Math. Soc.257, 39–71 (1980)Google Scholar
  21. [Q] Quinn, F.: Ends of maps. Ann. Math.110, 275–331 (1979)Google Scholar
  22. [St] Stallings, J.: Homology and central series of groups. J. Algebra2, 170–181 (1965)Google Scholar
  23. [S] Stein, D.: Massey Products in the Cohomology of Groups with Applications to Link Theory. Ph.D. Thesis, Brandeis University 1985; Preprint Texas A&M. College Station, TexasGoogle Scholar
  24. [T] Traldi, L.: Milnor's invariants and the completions of link modules. Trans. Am. Math. Soc.284, 401–424 (1984)Google Scholar
  25. [Tu] Turaev, V.G.: The Milnor invariants and Massey products. Studies in Topology-II. Zap. Nauchn. Semin. Leniningr. Otd. Mat. Inst. Steklova Acad. Nauk. USSR66, 189–203 (1976) (in translation) J. Sov. Math.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Kent E. Orr
    • 1
  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations