Inventiones mathematicae

, Volume 95, Issue 2, pp 325–354 | Cite as

Monodromy for the hypergeometric functionnFn−1

  • F. Beukers
  • G. Heckman
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ba] Bailey, W.N.: On certain relations between hypergeometric series of higher order. J. London Math. Soc.8, 100–107 (1933)Google Scholar
  2. [Bo] Borel, A.: Linear algebraic groups. New York: Benjamin 1969Google Scholar
  3. [Bou] Bourbaki, N.: Groupes et Algèbres de Lie, Chap. 4, 5, 6. Paris: Hermann 1981Google Scholar
  4. [Co] Cohen, A.M.: Finite complex reflection groups. Ann. Sci. Éc. Norm. Super., IU. Ser.9, 379–436 (1976); erratum in11, 613 (1978)Google Scholar
  5. [E] Erdélyi, A.: Higher transcendental functions, Vol I. Bateman Manuscript Project, New York: McGraw-Hill 1953Google Scholar
  6. [Ho] Honda, T.: Algebraic differential equations. INDAM Symposia Math.XXIV, 169–204 (1981)Google Scholar
  7. [Hu] Humphreys, J.E.: Introduction to Lie algebras and representation theory, Berlin-Heidelberg-New York: Springer 1972Google Scholar
  8. [I] Ince, E.L.: Ordinary differential equations. Dover publ. 1956Google Scholar
  9. [Kat] Katz, N.M.: Algebraic solutions of differential equations. Invent. Math.18, 1–118 (1972)Google Scholar
  10. [Kap] Kaplansky, I.: An introduction to differential algebra. Paris: Hermann 1957Google Scholar
  11. [Kl] Klein, F.: Vorlesungen über die hypergeometrische Funktion. Berlin-Heidelberg-New York: Springer 1933Google Scholar
  12. [La] Landau, E.: Eine Anwendung des Eisensteinschen Satz auf die Theorie der Gausschen Differentialgleichung. J. Reine Angew. Math. 127 92–102 (1904); (reprinted in Collected Works, Vol. II, pp. 98–108, Thales Verlag, Esssen 1987Google Scholar
  13. [Le] Levelt, A.H.M.: Hypergeometric functions. Thesis, University of Amsterdam 1961Google Scholar
  14. [Mi] Mitchell, H.H.: Determination of all primitive collineation groups in more than four variables which contain homologies. Am. J. Math.36, 1–21 (1914)Google Scholar
  15. [Mo] Mostow, G.D.: Braids, hypergeometric functions and lattices. Bull. Am. Math. Soc.16, 225–246 (1987)Google Scholar
  16. [Pl] Plemelj, J.: Problems in the sense of Riemann and Klein. Interscience Publ. 1964Google Scholar
  17. [Po] Pochhammer, L.: Zur Theorie der allgemeineren hypergeometrische Reihe. J. Reine Angew. Math. 102, 76–159 (1988)Google Scholar
  18. [R] Riemann, B.: Gesammelte mathematische Werke, Teubner, Leipzig 1892Google Scholar
  19. [Sc] Schwarz, H.A.: Über diejenigen Fälle in welchen einer algebraische Funktion ihres vierten Elementes darstellt. Crelle J75, 292–335 (1873)Google Scholar
  20. [ST] Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math.6, 274–304 (1954)Google Scholar
  21. [T] Thomae, J.: Über die höheren hypergeometrischen Reihen. Math. Ann.2, 427–444 (1870)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • F. Beukers
    • 1
  • G. Heckman
    • 2
  1. 1.Department of MathematicsUniversity of UtrechtUtrechtThe Netherlands
  2. 2.Department of MathematicsUniversity of LeidenLeidenThe Netherlands

Personalised recommendations