Advertisement

Inventiones mathematicae

, Volume 95, Issue 3, pp 541–558 | Cite as

A certain Dirichlet series attached to Siegel modular forms of degree two

  • W. Kohnen
  • N. -P. Skoruppa
Article

Keywords

Modular Form Dirichlet Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrianov, A.N.: Euler products corresponding to Siegel modular forms of genus 2. Russ. Math. Surv.29, 45–116 (1974)Google Scholar
  2. 2.
    Eichler, M., Zagier, D.: The theory of Jacobi forms (Progress in Maths. Vol. 55). Boston: Birkhäuser 1985Google Scholar
  3. 3.
    Evdokimov, S.A.: A characterization of the Maass space of Siegel cusp forms of degree 2 (in Russian). Mat. USSR Sb. (154)112, 133–142 (1980)Google Scholar
  4. 4.
    Gritsenko, V.A.: The action of modular operators on the Fourier-Jacobi coefficients of modular forms. Math. USSR Sbornik47 (1984), 237–267Google Scholar
  5. 5.
    Klingen, H.: Zum Darstellungssatz für Siegelsche Modulformen. Math. Z.102, 30–43 (1967)Google Scholar
  6. 6.
    Kohnen, W.: On the Petersson norm of a Siegel-Hecke eigenform of degree two in the Maass space. J. Reine Angew. Math.357, 96–100 (1985)Google Scholar
  7. 7.
    Kurokawa, N.: Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two. Invent. Math.49, 149–165 (1978)Google Scholar
  8. 8.
    Oda, T.: On the poles of AndrianovL-functions. Math. Ann.256, 323–340 (1981)Google Scholar
  9. 9.
    Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. In: Serre, J.-P., Zagier, D. (eds.). Modular functions of one variable VI. (Lect. Notes Maths. Vol. 627, pp. 105–169). Berlin Heidelberg New York: Springer 1977Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • W. Kohnen
    • 1
    • 2
  • N. -P. Skoruppa
    • 1
  1. 1.Max-Planck-Institut für MathematikBonn 3Federal Republic of Germany
  2. 2.Mathematisches Institut der Universität MünsterMünsterFederal Republic of Germany

Personalised recommendations