Inventiones mathematicae

, Volume 98, Issue 3, pp 599–622 | Cite as

Analytic formulas for the regulator of a number field

  • Eduardo Friedman

Summary

LetR=Rk andw=wk be the regulator and the number of roots of unity in the number fieldk. We determine allk for whichR/w<1/8. There are nine such fields. Sincew≥2, we have allk withR<1/4. In particular, we find the first three minima ofR over allk. There are three main ingredients to the proof:
  1. i)

    A new analytic formula (Theorem A below).

     
  2. ii)

    A refinement of Remak's geometric approach.

     
  3. iii)

    A refinement of Zimmert's analytic method.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B-M] Bergé, A.M., Martinet, J.: Sur les minorations géométriques des régulateurs. Sém. Théorie des Nombres de Paris (1987–1988). Boston: Birkhäuser (to appear)Google Scholar
  2. [B-S] Borevich, Z., Shafarevich, I.: Number theory. New York: Academic Press 1966Google Scholar
  3. [Bo] Boyd, D.: Reciprocal polynomials having small measure. Math. Comput.35, 1361–1377 (1980)Google Scholar
  4. [Br] Braaksma, B.L.J.: Asymptotic expansions and analytic continuations for a class of Barnes-integrals. Compos. Math.15, 239–341 (1963)Google Scholar
  5. [Ca] Cassels, J.: An introduction to the geometry of numbers. Berlin-Heidelberg-New York: Springer 1959Google Scholar
  6. [Do] Dobrowolski, E.: On a question of Lehmer and the number of irreducible factors of a polynomial. Acta Arith.34, 391–401 (1979)Google Scholar
  7. [DyD 1] Diaz y Diaz, F.: Petits discriminants des corps de nombres totalement imaginaires de degré 8. J. Number Theory25, 34–52 (1987)Google Scholar
  8. [DyD 2] Diaz y Diaz, F.: Discriminant minimal et petits discriminants des corps de nombres de degré 7 avec 5 places réelles. J. London Math. Soc.38, 33–46 (1988)Google Scholar
  9. [F] Friedman, E.: Hecke's integral formula. Sém. Théorie des Nombres de Bordeaux 1987–1988. Bordeaux: Univ. Bordeaux 1989Google Scholar
  10. [G-R] Gradshteyn, I., Ryzhik, I.: Table of integrals, series, and products. New York: Academic Press 1980Google Scholar
  11. [La] Lang, S.: Algebraic number theory. Berlin-Heidelberg-New York: Springer 1986Google Scholar
  12. [Lu] Luke, Y.: The special function and their approximations. New York: Academic Press 1969Google Scholar
  13. [Ma] Martinet, J.: Petits discriminants des corps de nombres. In: Armitage, J.V. (ed.). Proceedings of the Journées Arithmétiques 1980. (London Math. Soc. Lecture Notes, vol. 56, pp. 151–193). Cambridge: Cambridge Univ. Press 1982Google Scholar
  14. [M-S] Mathai, A.M., Saxena, R.K.: Generalized hypergeometric functions. (Lect. Notes Math., vol. 348). Berlin-Heidelberg-New York: Springer 1973Google Scholar
  15. [Po-Za] Pohst, M., Zassenhaus, H.: Algorithmic algebraic number theory. Cambridge: Cambridge Univ. Press (to appear)Google Scholar
  16. [Po-We-Za] Pohst, M., Weiler, P., Zassenhaus, H.: On effective computation of fundamental units II. Math. Comput.38, 293–329 (1982)Google Scholar
  17. [Re] Remak, R.: Über Grössenbeziehungen zwischen Diskriminanten und Regulator eines algebraischen Zahlkörpers. Compos. Math.10, 245–285 (1952)Google Scholar
  18. [Sie] Siegel, C.L.: Analytische Zahlentheorie II. Göttingen: Math. Inst. Univ. Göttingen 1964 (Reprinted 1988)Google Scholar
  19. [Sil] Silverman, J.: An inequality connecting the regulator and the discriminant of a number field. J. Number Theory19, 437–442 (1984)Google Scholar
  20. [We] Weil, A.: Basic number theory. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  21. [Zi] Zimmert, R.: Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung. Invent. Math.62, 367–380 (1981)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Eduardo Friedman
    • 1
  1. 1.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations