Inventiones mathematicae

, Volume 73, Issue 1, pp 33–49 | Cite as

The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold

  • C. C. Conley
  • E. Zehnder

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amann, H., Zehnder, E.: Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations. Annali Sc. Norm. Sup. Pisa, Serie IV. Vol.7, 539–603 (1980)Google Scholar
  2. 2.
    Arnold, V.I.: Mathematical methods of classical mechanics. (Appendix 9). Berlin-Heidelberg-New York: Springer 1978Google Scholar
  3. 3.
    Arnold, V.I.: Proceedings of symposia in pure mathematics. Vol. XXVIII A.M.S., p. 66, 1976Google Scholar
  4. 4.
    Banyaga, A.: Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique. Comment. Math. Helvetici53, 174–227 (1978)Google Scholar
  5. 5.
    Banyaga, A.: On fixed points of symplectic maps. PreprintGoogle Scholar
  6. 6.
    Conley, C.C.: Isolated invariant sets and the Morse index. CBMS, Regional Conf. Series in Math., vol. 38 (1978)Google Scholar
  7. 7.
    Conley, C.C., Zehnder, E.: Morse type index theory for flows and periodic solutions for Hamiltonian equations. To appear in Comm. Pure and Appl. Math.Google Scholar
  8. 8.
    Moser, J.: A fixed point theorem in symplectic geometry. Acta Math.141, 17–34 (1978)Google Scholar
  9. 9.
    Moser, J.: Proof of a generalized form of a fixed point theorem due to G.D. Birkooff. Lecture Notes in Mathematics, Vol. 597: Geometry and Topology, pp. 464–494. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  10. 10.
    Moser, J.: On the volume elements on a manifold. Transactions Amer. Math. Soc.120, 286–294 (1965)Google Scholar
  11. 11.
    Poincaré, H.: Méthodes nouvelles de la mécanique célèste. Vol. 3, chap. 28. Paris: Gauthier Villars 1899Google Scholar
  12. 12.
    Weinstein, A.: Lectures on symplectic manifolds. CBMS, Regional conf. series in Math., vol. 29 (1977)Google Scholar
  13. 13.
    Earle, C.J., Eells, J.: A fibre bundle description of Teichmüller theory. J. Diff. Geometry3, 19–43 (1969)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • C. C. Conley
    • 1
  • E. Zehnder
    • 2
  1. 1.Department of MathematicsUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Abteilung MathematikRuhr-Universität, BochumBochumFederal Republic of Germany

Personalised recommendations