Advertisement

Inventiones mathematicae

, Volume 92, Issue 3, pp 479–508 | Cite as

On the derived categories of coherent sheaves on some homogeneous spaces

  • M. M. Kapranov
Article

Keywords

Homogeneous Space Coherent Sheave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Backelin, J.: On the rates of growth of the homologies of Veronese subrings. (Lect. Notes Math., vol. 1183, p. 79–100). Berlin Heidelberg New York: Springer 1986Google Scholar
  2. 2.
    Beilinson, A.A.: Coherent sheaves onP n and problems of linear algebra. Funkcionalniy analiz i ego pril.12, 68–69 (1978) (in Russian)Google Scholar
  3. 3.
    Beilinson, A.A.: The derived category of coherent sheaves onP n. In: Questions of group theory and homological algebra, vol. 2, Aroslavl state univ., 1979, p. 42–54 (in Russian).Google Scholar
  4. 4.
    Beilinson, A.A., Bernstein, I.N., Deligne, P.: Faisceaux pervers. Astérisque100, 1981Google Scholar
  5. 5.
    Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Algebraic vector bundles onP n and problems of linear algebra. Funkcionalniy analiz i ego pril.12, 66–67 (1978) (in Russian)Google Scholar
  6. 6.
    Brauer, R., Weyl, H.: Spinors inN dimensions. Am. J. Math.57, 425–449 (1935)Google Scholar
  7. 7.
    Drezet, J.: M. Fibres exceptionels et suite spectrale de Beilinson generalisee surP 2(C). Math. Ann.275, 25–48 (1986)Google Scholar
  8. 8.
    Gorodentsev, A.L., Rudakov, A.N.: Exceptional bundles on projective spaces. Duke Math. J. (in press)Google Scholar
  9. 9.
    Hartshorne, R.: Algebraic geometry. Berlin Heidelberg New York: Springer 1977Google Scholar
  10. 10.
    Hartshorne R.: Residues and duality. (Lect. Notes Math. vol. 20) Berlin Heidelberg New York: Springer 1966Google Scholar
  11. 11.
    Kapranov, M.M.: On the derived category of coherent sheaves on Grassmann varieties. USSR Math. Izvestija48, 192–202 (1984)Google Scholar
  12. 12.
    Kapranov, M.M.: The derived category of coherent sheaves on a quadric. Funkcionalniy analiz i ego pril.20, 67 (1986) (in Russian)Google Scholar
  13. 13.
    Kostant, B.: Lie algebra cohomology and the generalised Borel-Weil theorem. Ann. Math.74, 329–387 (1961)Google Scholar
  14. 14.
    Lofwall, C.: On the subalgebra generated by one-dimensional elements in the Yoneda Ext-algebia. (Lect. Notes Math. vol. 1183, p. 291–338). Berlin Heidelberg New York: Springer 1986Google Scholar
  15. 15.
    Macdonald, I.: Symmetric functions and Hall polynomials. Oxford: Clarendon Press, 1979Google Scholar
  16. 16.
    McLane, S.: Homology. Berlin Heidelberg New York: Springer, 1963Google Scholar
  17. 17.
    Okonek, C., Schneider, M., Spindler, H.: Vector bundles on complex projective spaces. Basel Boston Birkhäuser, 1980Google Scholar
  18. 18.
    Priddy, S.: Koszul complexes. Trans. Am. Math. Soc.152, 1970Google Scholar
  19. 19.
    Swan, R.G.:K-theory of quadric hypersurfaces. Ann. Math.121, 113–153 (1985)Google Scholar
  20. 20.
    Tate, J.: Homology of Noetherian rings and local rings. Ill. J. Math.1, 14–27 (1957)Google Scholar
  21. 21.
    Verdier, J.-L.: Categories derivees. (Lect. Notes Math. 569, p. 262–311). Berlin Heidelberg New York: Springer 1977Google Scholar
  22. 22.
    Weyl, H.: Classical groups. Princeton Princeton University Press, 1941Google Scholar
  23. 23.
    Whitehead, G.W.: Recent advances in homotopy theory. Am. Math. Soc. regional conference series in Math., vol. 5, 1970Google Scholar
  24. 24.
    Cohen, J.M.: The decomposition of stable homotopy. Ann. Math.87, 305–320 (1968)Google Scholar
  25. 25.
    O'Brien N., Toledo D., Tong Y.L.: The trace and characteristic classes of coherent sheaves. Am. J. Math.103, 225–252 (1981)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • M. M. Kapranov
    • 1
  1. 1.Steklov Institute of MathematicsMoscowUSSR

Personalised recommendations