On the derived categories of coherent sheaves on some homogeneous spaces
Article
- 617 Downloads
- 107 Citations
Keywords
Homogeneous Space Coherent Sheave
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Backelin, J.: On the rates of growth of the homologies of Veronese subrings. (Lect. Notes Math., vol. 1183, p. 79–100). Berlin Heidelberg New York: Springer 1986Google Scholar
- 2.Beilinson, A.A.: Coherent sheaves onP n and problems of linear algebra. Funkcionalniy analiz i ego pril.12, 68–69 (1978) (in Russian)Google Scholar
- 3.Beilinson, A.A.: The derived category of coherent sheaves onP n. In: Questions of group theory and homological algebra, vol. 2, Aroslavl state univ., 1979, p. 42–54 (in Russian).Google Scholar
- 4.Beilinson, A.A., Bernstein, I.N., Deligne, P.: Faisceaux pervers. Astérisque100, 1981Google Scholar
- 5.Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Algebraic vector bundles onP n and problems of linear algebra. Funkcionalniy analiz i ego pril.12, 66–67 (1978) (in Russian)Google Scholar
- 6.Brauer, R., Weyl, H.: Spinors inN dimensions. Am. J. Math.57, 425–449 (1935)Google Scholar
- 7.Drezet, J.: M. Fibres exceptionels et suite spectrale de Beilinson generalisee surP 2(C). Math. Ann.275, 25–48 (1986)Google Scholar
- 8.Gorodentsev, A.L., Rudakov, A.N.: Exceptional bundles on projective spaces. Duke Math. J. (in press)Google Scholar
- 9.Hartshorne, R.: Algebraic geometry. Berlin Heidelberg New York: Springer 1977Google Scholar
- 10.Hartshorne R.: Residues and duality. (Lect. Notes Math. vol. 20) Berlin Heidelberg New York: Springer 1966Google Scholar
- 11.Kapranov, M.M.: On the derived category of coherent sheaves on Grassmann varieties. USSR Math. Izvestija48, 192–202 (1984)Google Scholar
- 12.Kapranov, M.M.: The derived category of coherent sheaves on a quadric. Funkcionalniy analiz i ego pril.20, 67 (1986) (in Russian)Google Scholar
- 13.Kostant, B.: Lie algebra cohomology and the generalised Borel-Weil theorem. Ann. Math.74, 329–387 (1961)Google Scholar
- 14.Lofwall, C.: On the subalgebra generated by one-dimensional elements in the Yoneda Ext-algebia. (Lect. Notes Math. vol. 1183, p. 291–338). Berlin Heidelberg New York: Springer 1986Google Scholar
- 15.Macdonald, I.: Symmetric functions and Hall polynomials. Oxford: Clarendon Press, 1979Google Scholar
- 16.McLane, S.: Homology. Berlin Heidelberg New York: Springer, 1963Google Scholar
- 17.Okonek, C., Schneider, M., Spindler, H.: Vector bundles on complex projective spaces. Basel Boston Birkhäuser, 1980Google Scholar
- 18.Priddy, S.: Koszul complexes. Trans. Am. Math. Soc.152, 1970Google Scholar
- 19.Swan, R.G.:K-theory of quadric hypersurfaces. Ann. Math.121, 113–153 (1985)Google Scholar
- 20.Tate, J.: Homology of Noetherian rings and local rings. Ill. J. Math.1, 14–27 (1957)Google Scholar
- 21.Verdier, J.-L.: Categories derivees. (Lect. Notes Math. 569, p. 262–311). Berlin Heidelberg New York: Springer 1977Google Scholar
- 22.Weyl, H.: Classical groups. Princeton Princeton University Press, 1941Google Scholar
- 23.Whitehead, G.W.: Recent advances in homotopy theory. Am. Math. Soc. regional conference series in Math., vol. 5, 1970Google Scholar
- 24.Cohen, J.M.: The decomposition of stable homotopy. Ann. Math.87, 305–320 (1968)Google Scholar
- 25.O'Brien N., Toledo D., Tong Y.L.: The trace and characteristic classes of coherent sheaves. Am. J. Math.103, 225–252 (1981)Google Scholar
Copyright information
© Springer-Verlag 1988