Inventiones mathematicae

, Volume 96, Issue 3, pp 459–505

Embedded minimal surfaces with an infinite number of ends

  • Michael Callahan
  • David Hoffman
  • William H. MeeksIII
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allard, W.K.: On the first variation of a manifold: boundary behavior. Ann. Math.101, 418–446 (1975)Google Scholar
  2. 2.
    Callahan, M., Hoffman, D., Hoffman, J.: Computer graphics tools for the study of minimal surfaces. Comm. Assoc. Comput. Mach.31, 648–661 (1988)Google Scholar
  3. 3.
    Callahan, M., Hoffman, D., Meeks, III, W.H.: Embedded minimal surfaces with four ends(Preprint)Google Scholar
  4. 4.
    Callahan, M., Hoffman, D., Meeks, III, W.H.: The structure of singly periodic minimal surfaces (Preprint)Google Scholar
  5. 5.
    Costa, C.: Example of a complete minimal immersion inR 3 of genus one and three embedded ends. Bull. Soc. Bras. Mat15, 47–54 (1984)Google Scholar
  6. 6.
    Courant, R.: Dirichlet's principle. Conformal Mapping and Minimal Surfaces, New York, Interscience Publishers, Inc., 1950Google Scholar
  7. 7.
    Douglas, J.: Minimal surfaces of higher topological structure. Ann. Math.40, 205–298 (1959)Google Scholar
  8. 8.
    Gackstatter, F.: Lectures on minimal surfaces. USP Sao Paulo Brasil (1980)Google Scholar
  9. 9.
    Gackstatter, F.: Über die Dimension einer Minimalfläche und zur Ungleichung von St. Cohn-Vossen. Arch. Rat. Mech. Anal.61, 141–152 (1976)Google Scholar
  10. 10.
    Hardt, R., Simon, L.: Boundary regularity and embedded minimal solutions for the oriented Platcau problem. Ann. Math.110, 439–486 (1979)Google Scholar
  11. 11.
    Hildebrandt, S.: Boundary behavior of minimal surfaces. Arch. Rat. Mech. Anal.35, 47–81 (1969)Google Scholar
  12. 12.
    Hoffman, D.: The computer-aided discovery of new embedded minimal surfaces. Math. Intel.9, 8–21 (1987)Google Scholar
  13. 13.
    Hoffman, D.: The construction of families of embedded minimal surfaces. In: Concus, P., Finn, R. (eds.) (Variational Methods of Free Surface Interfaces, pp. 25–36) Berlin-Heidelberg-New York: Springer, 1987Google Scholar
  14. 14.
    Hoffman, D., Meeks, III, W.H.: A complete embedded minimal surface with genus one, three ends and finite total curvature. J. Differ. Geom.21, 109–127 (1985)Google Scholar
  15. 15.
    Hoffman, D., Meeks, III, W.H.: Embedded minimal surfaces of finite topology (Preprint)Google Scholar
  16. 16.
    Hoffman, D., Meeks, III, W.H.: One-parameter families of embedded minmal surfaces (Preprint)Google Scholar
  17. 17.
    Hoffman, D., Meeks, III, W.H.: The strong halfspace theorem for minimal surfaces (Preprint)Google Scholar
  18. 18.
    Hoffman, D., Meeks, III, W.H.: A variational approach to the existence of complete embedded minimal surfaces of finite topology. Duke Math. J.57, 877–893 (1988)Google Scholar
  19. 19.
    Jorge, L.P.M., Meeks, III, W.H.: The topology of complete minimal surfaces of finite total Gaussian curvature. Topology22, 203–221 (1983)Google Scholar
  20. 20.
    Karcher, H.: New examples of periodic minimal surfaces. Manuscr Math.62, 83 (1988)Google Scholar
  21. 21.
    Lawson, Jr., H.B.: Lectures on Minimal Submanifolds. Berkeley, Publish or Perish Press, 1971Google Scholar
  22. 22.
    Meeks, III, W.H.: A survey of the geometric results in the classical theory of minimal surfaces. Bol. Soc. Brasil Mat.12, 29–86 (1981)Google Scholar
  23. 23.
    Meeks, III, W.H., Yau, S.T.: The classical Plateau problem and the topology of three-dimensional manifolds. Topology21, 409–442 (1982)Google Scholar
  24. 24.
    Meeks, III, W.H., Yau, S.T.: The existence of embedded minimal surfaces and the problem of uniqueness. Math. Z.179, 151–168 (1982)Google Scholar
  25. 25.
    Ossermann, R.: Global properties of minimal surfaces inE 3 andE n. Ann. Math.80, 340–364 (1964)Google Scholar
  26. 26.
    Osserman, R.: A survey of minimal surfaces, New York: Dover Publications, 2nd edition, 1986Google Scholar
  27. 27.
    Pitts, J., Rubenstein, H.: Existence of minimal surfaces of bounded topological type in 3-manifolds. In: Proceedings of the Center for Mathematical Analysis, Australian National University, Cambera, Australia, 1987. Vol. 10Google Scholar
  28. 28.
    Protter, M., Weinberger, H.: Maximum principles in differential equations. Englewood, NJ: Prentice-Hall, 1967Google Scholar
  29. 29.
    Riemann, B.: Oeuvres Mathématiques de Riemann. Paris: Gauthiers-Vllars, 1898Google Scholar
  30. 30.
    Schoen, R.: Uniqueness, symmetry, and embeddedness of minimal surfaces. J. Differ. Geom.18, 791–809 (1983)Google Scholar
  31. 31.
    Tannery, J., Molk, J.: Éléments de la Théorie des Fonctions Elliptiques. Paris: Gauthier-Villars, et Fils, 1898Google Scholar
  32. 32.
    Toubiana, E.: On the uniqueness of the helicoid (to appear in Annales de l'InstitutFourier)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Michael Callahan
    • 1
  • David Hoffman
    • 1
  • William H. MeeksIII
    • 1
  1. 1.University of MassachusettsAmherstUSA

Personalised recommendations