Inventiones mathematicae

, Volume 93, Issue 1, pp 185–223 | Cite as

Subgroups of finite index in nilpotent groups

  • F. J. Grunewald
  • D. Segal
  • G. C. Smith
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A] Apostol, T.M.:Modular functions and dirichlet series in number theory. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  2. [B] Bass, H.: The degree of polynomial growth of finitely generated nilpotent groups. Proc. London Math. Soc.25, 603–614 (1972)Google Scholar
  3. [BR] Bushnell, C.J., Reiner, I.: Solomon's conjectures and the local functional equation for zeta functions of orders. Bull. Am. Math. Soc.2, 306–310 (1980)Google Scholar
  4. [C] Cassels, J.W.S.: Local fields. Cambridge: C.U.P. 1986Google Scholar
  5. [D1] Denef, J.: The rationality of the Poincaré series associated to thep-adic points on a variety. Invent. math.77, 1–23 (1984)Google Scholar
  6. [D2] Denef, J.: On the degree of Igusa's local zeta functions. Am. J. Math.109, 991–1008 (1987)Google Scholar
  7. [G] Gromov, M.: Groups of polynomial, growth and expanding maps. Publ. Math. Inst. Hautes Etud Sci53, 53–78 (1981)Google Scholar
  8. [GS] Grunewald, F.J., Segal, D.: Reflections on the classification of, torsion-free nilpotent groups. In: Group Theory:Essays for Philip, Hall, Gruenberg, K. W., Roseblade, J. E. (eds.). New York: Academic Press 1984Google Scholar
  9. [H] Hall, P.: Nilpotent groups. Queen Mary College Math. Notes, 1969Google Scholar
  10. [J] Janusz, J.G.:Algebraic number fields. New York: Academic Press 1973Google Scholar
  11. [L] Lubotzky, A.: Dimension function for discrete groups. In: Groups St. Andrews 1985. Cambridge: C.U.P. 1986Google Scholar
  12. [M1] Macintyre, A.J.: Rationality ofp-adic Poincaré series: uniformity inp. Submitted to Annals Pure Appl. LogicGoogle Scholar
  13. [M2] Madonald, I.G.: Symmetric functions and Hall polynomials. Oxford: O.U.P. 1979Google Scholar
  14. [P] Pickel, P.F.: Finitely generated nilpotent groups, with isomorphic finite quotients. Trans. Am. Math. Soc.160, 327–343 (1971)Google Scholar
  15. [S1] Segal, D.: Polycyclic groups. Cambridge: C.U.P. 1983Google Scholar
  16. [S2] Segal, D.: Subgroups of finite index in soluble groups, I. In: Groups St. Andrews 1985. Cambridge: C.U.P. 1986Google Scholar
  17. [S3] Segal, D.: On the automorphism groups of certain Lie algebras. (In preparation)Google Scholar
  18. [S4] Smith, G.C.: Compressibility in nilpotent groups. Bull. London Math. Soc.17, 453–457 (1985)Google Scholar
  19. [W] Weil, A.:Adeles and algebraic groups. Boston: Birkhäuser 1982Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • F. J. Grunewald
    • 1
  • D. Segal
    • 2
  • G. C. Smith
    • 3
  1. 1.Mathematisches Institut der UniversitätBonn 1Federal Republic of Germany
  2. 2.All Souls CollegeOxfordUK
  3. 3.Department of MathematicsUniversity of BathBathUK

Personalised recommendations