Keywords
Manifold
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Akizuki, Y., Nakano, S.: Note on Kodaira-Spencer's proof of Lefschetz theorems. Proc. Japan Acad.30, 266–272 (1954)Google Scholar
- 2.Alekseevskii, D.V.: Riemannian spaces with exceptional holonomy groups. Functional Anal. Appl.2, 97–105 (1968)Google Scholar
- 3.Alekseevskii, D.V.: Classification of quaternionic spaces with a transitive solvable group of motions. Math. USSR-Izv.9, 297–339 (1975)Google Scholar
- 4.Atiyah, M.F., Singer, I.M.: The index of elliptic operators: III. Ann. Math.87, 546–604 (1968)Google Scholar
- 5.Atiyah, M.F., Hitchin, N.J., Singer, I.M.: Self-duality in four-dimensional Riemannian geometry. Proc. Roy. Soc. London Ser. A:362, 425–461 (1978)Google Scholar
- 6.Bérard Bergery, L.: New examples of Einstein metrics. Mathematische Arbeitstagung, Bonn, 1979Google Scholar
- 7.Berger, M.: Sur les groupes d'holonomie homogène des variétés à connexion affines et des variétés riemanniennes. Bull. Soc. Math. France83, 279–330 (1955)Google Scholar
- 8.Bogomolov, F.A.: Hamiltonian Kähler manifolds, Soviet Math. Dokl.19, 1462–1465 (1978)Google Scholar
- 9.Bonan, E.: Sur lesG-structures de type quaterniomen, Cahiers Topologie Géom. Différentielle9, 389–461 (1967)Google Scholar
- 10.Boothby, W.: A note on homogeneous complex contact manifolds. Proc. Amer. Math. Soc.13, 276–280 (1962)Google Scholar
- 11.Calabi, E.: On Kähler manifolds with vanishing canonical class. In: Algebraic Geometry and Topology, in honor of Lefschetz, Princeton University Press, Princeton, 1957Google Scholar
- 12.Calabi, E.: Isometric families of Kähler structures. In: The Chern Symposium 1979. Berlin-Heidelberg-New York: Springer 1980Google Scholar
- 13.Friedrich, T., Kurke, H.: Compact four-dimensional self-dual Einstein manifolds with positive scalar curvature. Mathematische Nachrichten (in press 1982)Google Scholar
- 14.Gray, A.: A note on manifolds whose holonomy group is a subgroup ofSp(n)Sp(1), Michigan Math. J.16, 125–128 (1969)Google Scholar
- 15.Gray, A., Green, P.: Sphere transitive structures and the triality automorphism. Pacific J. Math.34, 83–96 (1970)Google Scholar
- 16.Hirzebruch, F.: Topological Methods in Algebraic Geometry, 3rd ed. Berlin-Heidelberg-New York: Springer 1966Google Scholar
- 17.Hitchin, N.J.: Kählerian twistor spaces, Proc. London Math. Soc. (3)43, 133–150 (1981)Google Scholar
- 18.Ishihara, S.: Quaternion Kählerian manifolds. J. Differential Geometry9, 483–500 (1974)Google Scholar
- 19.Kobayashi, S.: On compact Kähler manifolds with positive Ricci tensor. Ann. Math.74, 381–385 (1961)Google Scholar
- 20.Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, 2 volumes. New York: Interscience 1963, 1969Google Scholar
- 21.Kobayashi, S., Ochiai, T.: Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ.13, 31–47 (1973)Google Scholar
- 22.Kraines, V.: Topology of quaternionic manifolds. Trans. Amer. Math. Soc.122, 357–367 (1966)Google Scholar
- 23.Lichnerowicz, A.: Spineurs harmoniques. C.R. Acad. Sci. Paris257, 7–9 (1963)Google Scholar
- 24.Marchiafava, S., Romani, G.: Sui fibrati con struttura quaternionale generlizzata. Ann. Mat. Pura Appl. (IV) CVII, 131–157 (1976)Google Scholar
- 25.Salamon, S.M.: Quaternionic Manifolds. D. Phil. Thesis, University of Oxford, 1980Google Scholar
- 26.Wells, R.O., Jr.: Complex manifolds and mathematical physics. Bull. Am. Math. Soc.1 (2), 296–336 (1979)Google Scholar
- 27.Wolf, J.A.: Complex homogeneous contact manifolds and quaternionic symmetric spaces. J. Math. Mech.14, 1033–1047 (1965)Google Scholar
Copyright information
© Springer-Verlag 1982