Advertisement

Inventiones mathematicae

, Volume 67, Issue 1, pp 143–171 | Cite as

Quaternionic Kähler manifolds

  • Simon Salamon
Article

Keywords

Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akizuki, Y., Nakano, S.: Note on Kodaira-Spencer's proof of Lefschetz theorems. Proc. Japan Acad.30, 266–272 (1954)Google Scholar
  2. 2.
    Alekseevskii, D.V.: Riemannian spaces with exceptional holonomy groups. Functional Anal. Appl.2, 97–105 (1968)Google Scholar
  3. 3.
    Alekseevskii, D.V.: Classification of quaternionic spaces with a transitive solvable group of motions. Math. USSR-Izv.9, 297–339 (1975)Google Scholar
  4. 4.
    Atiyah, M.F., Singer, I.M.: The index of elliptic operators: III. Ann. Math.87, 546–604 (1968)Google Scholar
  5. 5.
    Atiyah, M.F., Hitchin, N.J., Singer, I.M.: Self-duality in four-dimensional Riemannian geometry. Proc. Roy. Soc. London Ser. A:362, 425–461 (1978)Google Scholar
  6. 6.
    Bérard Bergery, L.: New examples of Einstein metrics. Mathematische Arbeitstagung, Bonn, 1979Google Scholar
  7. 7.
    Berger, M.: Sur les groupes d'holonomie homogène des variétés à connexion affines et des variétés riemanniennes. Bull. Soc. Math. France83, 279–330 (1955)Google Scholar
  8. 8.
    Bogomolov, F.A.: Hamiltonian Kähler manifolds, Soviet Math. Dokl.19, 1462–1465 (1978)Google Scholar
  9. 9.
    Bonan, E.: Sur lesG-structures de type quaterniomen, Cahiers Topologie Géom. Différentielle9, 389–461 (1967)Google Scholar
  10. 10.
    Boothby, W.: A note on homogeneous complex contact manifolds. Proc. Amer. Math. Soc.13, 276–280 (1962)Google Scholar
  11. 11.
    Calabi, E.: On Kähler manifolds with vanishing canonical class. In: Algebraic Geometry and Topology, in honor of Lefschetz, Princeton University Press, Princeton, 1957Google Scholar
  12. 12.
    Calabi, E.: Isometric families of Kähler structures. In: The Chern Symposium 1979. Berlin-Heidelberg-New York: Springer 1980Google Scholar
  13. 13.
    Friedrich, T., Kurke, H.: Compact four-dimensional self-dual Einstein manifolds with positive scalar curvature. Mathematische Nachrichten (in press 1982)Google Scholar
  14. 14.
    Gray, A.: A note on manifolds whose holonomy group is a subgroup ofSp(n)Sp(1), Michigan Math. J.16, 125–128 (1969)Google Scholar
  15. 15.
    Gray, A., Green, P.: Sphere transitive structures and the triality automorphism. Pacific J. Math.34, 83–96 (1970)Google Scholar
  16. 16.
    Hirzebruch, F.: Topological Methods in Algebraic Geometry, 3rd ed. Berlin-Heidelberg-New York: Springer 1966Google Scholar
  17. 17.
    Hitchin, N.J.: Kählerian twistor spaces, Proc. London Math. Soc. (3)43, 133–150 (1981)Google Scholar
  18. 18.
    Ishihara, S.: Quaternion Kählerian manifolds. J. Differential Geometry9, 483–500 (1974)Google Scholar
  19. 19.
    Kobayashi, S.: On compact Kähler manifolds with positive Ricci tensor. Ann. Math.74, 381–385 (1961)Google Scholar
  20. 20.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, 2 volumes. New York: Interscience 1963, 1969Google Scholar
  21. 21.
    Kobayashi, S., Ochiai, T.: Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ.13, 31–47 (1973)Google Scholar
  22. 22.
    Kraines, V.: Topology of quaternionic manifolds. Trans. Amer. Math. Soc.122, 357–367 (1966)Google Scholar
  23. 23.
    Lichnerowicz, A.: Spineurs harmoniques. C.R. Acad. Sci. Paris257, 7–9 (1963)Google Scholar
  24. 24.
    Marchiafava, S., Romani, G.: Sui fibrati con struttura quaternionale generlizzata. Ann. Mat. Pura Appl. (IV) CVII, 131–157 (1976)Google Scholar
  25. 25.
    Salamon, S.M.: Quaternionic Manifolds. D. Phil. Thesis, University of Oxford, 1980Google Scholar
  26. 26.
    Wells, R.O., Jr.: Complex manifolds and mathematical physics. Bull. Am. Math. Soc.1 (2), 296–336 (1979)Google Scholar
  27. 27.
    Wolf, J.A.: Complex homogeneous contact manifolds and quaternionic symmetric spaces. J. Math. Mech.14, 1033–1047 (1965)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Simon Salamon
    • 1
  1. 1.Little ClactonEngland

Personalised recommendations