Inventiones mathematicae

, Volume 71, Issue 1, pp 51–163

Finite groups of rank 3. II

  • Michael Aschbacher


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aschbacher, M.: The Uniqueness Case for finite groups. Ann. Math. 117 (1983)Google Scholar
  2. 2.
    Aschbacher, M.: Finite groups of rank 3,I. Invent. Math.63, 357–402 (1981)Google Scholar
  3. 3.
    Aschbacher, M.: Some results on pushing up in finite groups. Math. Z.177, 61–80 (1981)Google Scholar
  4. 4.
    Aschbacher, M.:GF(2)-representations of finite groups. Am. J. Math.104, 683–771 (1982)Google Scholar
  5. 5.
    Aschbacher, M., Seitz, G.: Involutions in Chevalley groups over fields of even order. Nagoya Math. J.63, 1–92 (1976)Google Scholar
  6. 6.
    Aschbacher, M., Seitz, G.: On groups with a standard component of known type. Osaka J. Math.13, 439–482 (1976)Google Scholar
  7. 7.
    Aschbacher, M., Gorenstein, D., Lyons, R.: The embedding of 2-locals in finite groups of characteristic 2-type. Ann. Math.114, 335–456 (1981)Google Scholar
  8. 8.
    Bauman, B.: Über endliche Gruppen mit einer zuL 2 (2n) isomorphic Faktorgruppe. Proc. AMS74, 215–222 (1979)Google Scholar
  9. 9.
    Bender, H.: Über den größtenp'-Normalteiler inp-anflosbaren Gruppen. Arch. Math.18, 15–16 (1967)Google Scholar
  10. 10.
    Bloom, D.: The subgroups ofPSL 3 (q), for oddq. Trans. AMS127, 150–178 (1967)Google Scholar
  11. 11.
    Campbell, N.: Pushing up in finite groups. Thesis, Caltech, 1979Google Scholar
  12. 12.
    Conway, J.: Three lectures on exceptional groups. Finite Simple Groups. London: Academic Press 1971Google Scholar
  13. 13.
    Cooperstein, B., Mason, G.: Some questions concerning the representations of Chevalley groups in characteristic 2Google Scholar
  14. 14.
    Curtis, C.: Central extensions of groups of Lie type. J. Reine Ang. Math.220, 174–185 (1965)Google Scholar
  15. 15.
    Finkelstein, L., Frohardt, D.: A 3-local characterization ofL 7(2). Trans. AMS250, 175–185 (1965)Google Scholar
  16. 16.
    Finkelstein, L.: Standard 2-components of typeSp(6,2). Trans. AMS266, 71–92 (1981)Google Scholar
  17. 17.
    Finkelstein, L.: Standard 3-components of typeSL(4,2)Google Scholar
  18. 18.
    Finkelstein, L., Rudvalis, A.: Maximal subgroups of the Hall-Janko-Wales group. J. Alg.24, 486–493 (1973)Google Scholar
  19. 19.
    Finkelstein, L.: The maximal subgroups of Janko's simple groups of order 50, 232, 960. J. Alg.30, 122–143 (1974)Google Scholar
  20. 20.
    Gorenstein, D., Lyons, R.: The local structure of finite groups of characteristic. 2-type. Memoirs AMS. in press (1982)Google Scholar
  21. 21.
    Greiss, R.: Shur multipliers of finite simple groups of Lie type. Trans. AMS183, 355–421 (1973)Google Scholar
  22. 22.
    Hall, J.: Certain 2-local blocks with alternating sections. Comm. Alg. in press (1982)Google Scholar
  23. 23.
    Harada, K.: On finite simple groups possessing 2-local blocks of orthogonal type. Comm. Alg.8, 441–449 (1980)Google Scholar
  24. 24.
    Held, D.: The simple groups related toM 24. J. Alg.13, 253–296 (1969)Google Scholar
  25. 25.
    Holt, D.: Transitive permutation groups in which an involution central in a Sylow 2-group fixes a unique point. Proc. London Math. Soc.37, 165–192 (1978)Google Scholar
  26. 26.
    Janko, Z.: A new simple group of order 86, 775, 571, 046, 562, 880 which possessesM 24 and the full covering group ofM 22 as subgroups. J. Alg.42, 564–596 (1976)Google Scholar
  27. 27.
    Jones, W., Parshall, B.: On the 1-cohomology of finite groups of Lie type. Proceedings of the Conference on Finite Groups. New York: Academic Press 1976Google Scholar
  28. 28.
    Magliveras, S.: The subgroup structure of the Higman-Sims simple groups. Bull. AMS77, 535–539 (1971)Google Scholar
  29. 29.
    O'Nan, M.: Some evidence for the existence of a new simple group. Proc. London Math. Soc.32, 421–479 (1976)Google Scholar
  30. 30.
    Parrot, D.: A characterization of the Rudvalis simple group. Proc. London Math. Soc.32, 25–51 (1976)Google Scholar
  31. 31.
    Phan, K.: On groups generated by special unitary groups, I. J. Australian Math. Soc.23, 379–396 (1977)Google Scholar
  32. 32.
    Seitz, G.: Generation of finite groups of Lie type. Trans. AMS271, 351–407 (1982)Google Scholar
  33. 33.
    Smith, F.: On transitive permutation groups in which a 2-central involution fixes a unique point. Comm. Alg.7, 203–218 (1979)Google Scholar
  34. 34.
    Smith, S.: A characterization of some Chevalley groups in characteristic two. J. Alg.68, 390–425 (1981)Google Scholar
  35. 35.
    Solomon, R.: On certain 2-local blocks. Proc. London Math. Soc.43, 478–498 (1981)Google Scholar
  36. 36.
    Stroth, G.: Endlichê Gruppen, die eine maximale 2-lokale UntergruppeM so daßZ(F *(M)) eineTI-set inG ist. J. Alg.64, 460–528 (1980)Google Scholar
  37. 37.
    Timmesfeld, F.: On the structure of 2-local subgroups in finite groups. Math. Z.161, 119–136 (1978)Google Scholar
  38. 38.
    Timmesfeld, F.: On finite groups in which a maximal abelian normal subgroup of some maximal 2-local subgroup is aTI-set, Proc. London Math. Soc.43, 1–45 (1981)Google Scholar
  39. 39.
    Timmesfeld, F.: A note on 2-groups ofGF(2n)-type. Arch. Math.32, 101–108 (1979)Google Scholar
  40. 40.
    Yoshida, T.: Character-theoretic transfer. J. Alg.52, 1–38 (1978)Google Scholar
  41. 41.
    Foote, R.: Component type theorems for finite groups in characteristic 2. Illinois J. Math.26, 61–111 (1982)Google Scholar
  42. 42.
    Thompson, J.: Nonsolvable finite groups all of whose local subgroups are solvable, I. Bull. AMS74, 383–437 (1968)Google Scholar
  43. 43.
    Mclaughlin, J.: Some groups generated by transvections. Arch. Math.28, 364–368 (1967)Google Scholar
  44. 44.
    McBride, P.: Nonsolvable signalizer functors on finite groups. J. Alg.78, 215–238 (1982)Google Scholar
  45. 45.
    Glauberman, G.: Factorizations in local subgroups of finite groups, CBMS Regional Conf. Ser. in Math., vol. 33, AMS, Providence, R.I., 1977Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Michael Aschbacher
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations