Inventiones mathematicae

, Volume 71, Issue 1, pp 1–20 | Cite as

Hilbert's theorem 90 forK2, with application to the Chow groups of rational surfaces

  • Jean-Louis Colliot-Thélène
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bass, H., Tate, J.: The Milnor ring of a global field, AlgebraicK-Theory II. Lecture notes in math., vol. 342, pp. 349–446. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  2. 2.
    Bloch, S.: Torsion algebraic cycles,K 2 and Brauer groups of function fields. Bull. A.M.S.80, 941–945 (1974); expanded in Groupe de Brauer, éd. Kervaire, M., et Ojanguren, M. Lecture notes in math., vol. 844, pp. 75–102. Berlin-Heidelberg-New York: Springer 1981Google Scholar
  3. 3.
    Bloch, S.: Lectures on algebraic cycles. Duke University Lecture Notes in Mathematics no 4 1980Google Scholar
  4. 4.
    Bloch, S.: On the Chow groups of certain rational surfaces. Ann. Sc. E.N.S.14, 41–59 (1981)Google Scholar
  5. 5.
    Bloch, S.: Letter to C. Soulé (November 1981)Google Scholar
  6. 6.
    Bloch, S.: The dilogarithm and extensions of Lie algebras. AlgebraicK-Theory, Evanston (Friedlander, E.M., Stein, M.R., eds.) Lecture notes in math., vol. 854, pp. 1–23. Berlin-Heidelberg-New York: Springer 1981Google Scholar
  7. 7.
    Bloch, S.: Some formulas pertaining to theK-theory of commutative group schemes. Journal of Algebra53, 304–326 (1978)Google Scholar
  8. 8.
    Colliot-Thélène, J.-L., Ischebeck, F.: L'équivalence rationnelle sur les cycles de dimension zéro des variétés algébriques réelles, C.R. Acad. Sc. Paris292, 723–725 (1981)Google Scholar
  9. 9.
    Colliot-Thélène, J.-L., Sansuc, J.-J.: On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch. Duke Math. Journal48, 421–447 (1981)Google Scholar
  10. 10.
    Colliot-Thélène, J.-L., Sansuc, J.-J.: Quelques gammes sur les formes quadratiques (to appear in the Journal of Algebra)Google Scholar
  11. 11.
    Colliot-Thélène, J.-L., Sansuc, J.-J., Soulé, C.: Quelques théorèmes de finitude en théorie des cycles algébriques. C.R. Acad. Sc. Paris294, 749–752 (1982)Google Scholar
  12. 12.
    Coray, D.: An argument of Spencer Bloch, typescript (1980)Google Scholar
  13. 13.
    Jouanolou, J.-P.: Théorèmes de Bertini et applications. I.R.M.A., Strasbourg 1979Google Scholar
  14. 14.
    Kato, K.: A generalization of local class field theory by usingK-groups II. Journal of the Fac. of Sc., The Univ. of Tokyo, Sec. IA27, 603–683 (1980)Google Scholar
  15. 15.
    Lam, T.-Y.: The algebraic theory of quadratic forms. Benjamin, Reading, 1973Google Scholar
  16. 16.
    Merkur'ev, A.S., Suslin, A.A.:K-cohomology of Severi-Brauer varieties and norm residue homomorphism, Izvestija Akad. Nauk SSSR Ser. Mat. Tom 46, no 5 (1982), 1011–1046Google Scholar
  17. 17.
    Milnor, J.: Introduction to algebraicK-theory, Annals of Mathematics Studies, Princeton University Press, no 72, 1971Google Scholar
  18. 18.
    Suslin, A.A.: Torsion inK 2 of fields (preprint)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Jean-Louis Colliot-Thélène
    • 1
  1. 1.MathématiquesUniversité de Paris-SudOrsayFrance

Personalised recommendations