Advertisement

Inventiones mathematicae

, Volume 46, Issue 2, pp 179–200 | Cite as

On the local Langlands conjecture forGL(2)

  • Jerrold B. Tunnell
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buhler, J.: An Icosahedral Form of Weight One. In: Modular functions of one variableV. Lecture Notes in Mathematics 601, pp. 289–294, Berlin-Heidelberg-New York: Springer 1977Google Scholar
  2. 2.
    Callahan, T.: Some Orbital Integrals and a Technique for Counting Representations ofGL 2(F). To appearGoogle Scholar
  3. 3.
    Casselman, W.: The Restriction of a Representation ofGL 2(K) toGL 2(O). Math. Ann.206, 311–318 (1973)Google Scholar
  4. 4.
    Deligne, P.: Formes modulaires et representations deGL(2). In: Modular functions of one variable II. Lecture Notes in Mathematics 349, pp. 55–106, Berlin-Heidelberg-New York: Springer 1973Google Scholar
  5. 5.
    Deligne, P.: Les constantes des equations fonctionnelles des fonctionsL. In: Modular functions of one variable II. Lecture Notes in Mathematics 349, pp. 501–597, Berlin-Heidelberg-New York: Springer 1973Google Scholar
  6. 6.
    Gelbart, S.: Automorphic forms and Artin's conjecture. To apear in: Proceedings of the 1976 Bonn Conference on Modular Forms VIGoogle Scholar
  7. 7.
    Howe, R.: Kirillov Theory for CompactP-adic Groups. Preprint. Yale University. 1977Google Scholar
  8. 8.
    Jaquet, H., Langlands, R.P.: Automorphic Forms onGL(2). Lecture Notes in Mathematics 114, Berlin-Heidelberg-New York: Springer 1970Google Scholar
  9. 9.
    Langlands, R.P.: Base change forGL(2): The theory of Saito-Shintani with applications. IAS Notes, Princeton, 1975Google Scholar
  10. 10.
    Serre, J-P.: Corps Locaux, 2nd Edition. Paris: Hermann 1968Google Scholar
  11. 11.
    Serre, J-P.: Modular Forms of Weight One and Galois Representations. In: Algebraic Number Fields (L-Functions and Galois Properties). New York: Academic Press 1977Google Scholar
  12. 12.
    Weil, A.: Basic Number Theory, 3rd Edition. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  13. 13.
    Weil, A.: Exercises Dyadiques. Inventiones Math.27, 1–22 (1974)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Jerrold B. Tunnell
    • 1
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations