Inventiones mathematicae

, Volume 56, Issue 2, pp 109–112 | Cite as

A short proof of the Kempf vanishing theorem

  • W. J. Haboush


Hopf Algebra Algebraic Group Coherent Sheave Coordinate Ring Schubert Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Demazure, M., Grothendieck, A.: Séminaire de Géométrie Algébrique du Bois-Marie SGA 3, Lecture Notes in math. Berlin-Heidelberg-New York: Springer Verlag 1962/64Google Scholar
  2. 2.
    Cline, E., Parshall, B., Scott, L.: Cohomology, hyperalgebras, and representations, preprintGoogle Scholar
  3. 3.
    Haboush, W.: Central differential operators on semi-simple groups over fields of positive characteristic. In: Séminaire d'Algèbre. P. Dubreil, Proceedings, Paris (M.P. Malliavan, ed.) Lecture Notes in Math. Berlin, Heidelberg, New York: Springer Verlag 1978/79Google Scholar
  4. 4.
    Humphreys, J.: On the hyperalgebra of semi-simple algebraic group, In: Contributions to Algebra: A Collection of Papers Dedicated to Ellis Kolchin, pp. 203–210. New York: Academic Press 1970Google Scholar
  5. 5.
    Kempf, G.: Linear systems on homogeneous spaces, Ann. Math, 557–591 (1976)Google Scholar
  6. 6.
    Serre, J-P.: Faisceaux algébriques cohérents, Ann Math.61, 197–278 (1955)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Steinberg, R.: Representations of algebraic groups, Nagoya Math. J.22, 33–56 (1963)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • W. J. Haboush
    • 1
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance

Personalised recommendations