Inventiones mathematicae

, Volume 88, Issue 3, pp 495–520 | Cite as

Local rigidity of discrete groups acting on complex hyperbolic space

  • W. M. Goldman
  • J. J. Millson
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups, and representations of reductive groups. Ann. Math. Stud.94. Princeton University Press 1980Google Scholar
  2. 2.
    Bourbaki, N.: Element de mathematiques. Groupes et algebres de Lie. Chapitres 2 et 3. Paris: Hermann 1972Google Scholar
  3. 3.
    Faran, J.: Maps from the two-ball to the three-ball. Invent. Math.80, 441–475 (1982)Google Scholar
  4. 4.
    Goldman, W.M.: Characteristic classes and representations of discrete subgroups of Lie groups. Bull. Am. Math. Soc.6, 91–94 (1982)Google Scholar
  5. 5.
    Goldman, W.M.: Representations of fundamental groups of surfaces. In: Geometry and Topology, Proceedings, University of Maryland. Lect. Notes Math., vol. 1167, pp. 95–117. Berlin-Heidelberg-New York: Springer 1987Google Scholar
  6. 6.
    Johnson, D., Millson, J.J.: Deformation spaces associated to compact hyperbolic manifolds. In: Discrete groups in geometry and analysis. Proceedings of a conference held at Yale University in honor of G.D. Mostow, Progress in Math. Boston: Birkhäuser 1987Google Scholar
  7. 7.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Interscience tracts in pure and applied mathematics, Number 15, Vol. IIGoogle Scholar
  8. 8.
    Kourouniotis, C.: Deformations of hyperbolic structures on manifolds of several dimensions, Math. Proc. Camb. Phil. Soc.98, 247–261 (1985)Google Scholar
  9. 9.
    Matsushima, Y., Murakami, S.: On vector bundle valued harmonic forms and automorphic forms on symmetric spaces. Ann. Math.78 (2), 365–416 (1963)Google Scholar
  10. 10.
    Murakami, S.: Cohomology groups of vector-valued forms on symmetric spaces. Lecture notes, University of Chicago, 1966Google Scholar
  11. 11.
    Milnor, J.: Singular points of complex hypersurfaces. Ann. Math. Stud., vol. 61. Princeton University Press 1968Google Scholar
  12. 12.
    Raghunathan, M.S.: Discrete subgroups of Lie groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 68. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  13. 13.
    Thurston, W.P.: The geometry and topology of three-manifolds. Princeton University Lecture Notes, 1978Google Scholar
  14. 14.
    Tits, J.: Free subgroups in linear groups. J. Algebra20, 250–270 (1972)Google Scholar
  15. 15.
    Webster, S.M.: On mapping ann-ball into an (n+1)-ball in complex space. Pacific J. Math.81, 267–272 (1979)Google Scholar
  16. 16.
    Weil, A.: On discrete subgroups of Lie groups. Ann. Math.72 (2), 369–384 (1960)Google Scholar
  17. 17.
    Zimmer, R.: Ergodic theory and semisimple groups. Monographs in Mathematics. Boston: Birkhäuser, 1985Google Scholar
  18. 18.
    Artin, M.: On the solutions of analytic equations. Invent. Math.5, 277–291 (1968)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • W. M. Goldman
    • 1
  • J. J. Millson
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations