Inventiones mathematicae

, Volume 88, Issue 3, pp 495–520 | Cite as

Local rigidity of discrete groups acting on complex hyperbolic space

  • W. M. Goldman
  • J. J. Millson


Hyperbolic Space Discrete Group Complex Hyperbolic Space Local Rigidity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups, and representations of reductive groups. Ann. Math. Stud.94. Princeton University Press 1980Google Scholar
  2. 2.
    Bourbaki, N.: Element de mathematiques. Groupes et algebres de Lie. Chapitres 2 et 3. Paris: Hermann 1972Google Scholar
  3. 3.
    Faran, J.: Maps from the two-ball to the three-ball. Invent. Math.80, 441–475 (1982)Google Scholar
  4. 4.
    Goldman, W.M.: Characteristic classes and representations of discrete subgroups of Lie groups. Bull. Am. Math. Soc.6, 91–94 (1982)Google Scholar
  5. 5.
    Goldman, W.M.: Representations of fundamental groups of surfaces. In: Geometry and Topology, Proceedings, University of Maryland. Lect. Notes Math., vol. 1167, pp. 95–117. Berlin-Heidelberg-New York: Springer 1987Google Scholar
  6. 6.
    Johnson, D., Millson, J.J.: Deformation spaces associated to compact hyperbolic manifolds. In: Discrete groups in geometry and analysis. Proceedings of a conference held at Yale University in honor of G.D. Mostow, Progress in Math. Boston: Birkhäuser 1987Google Scholar
  7. 7.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Interscience tracts in pure and applied mathematics, Number 15, Vol. IIGoogle Scholar
  8. 8.
    Kourouniotis, C.: Deformations of hyperbolic structures on manifolds of several dimensions, Math. Proc. Camb. Phil. Soc.98, 247–261 (1985)Google Scholar
  9. 9.
    Matsushima, Y., Murakami, S.: On vector bundle valued harmonic forms and automorphic forms on symmetric spaces. Ann. Math.78 (2), 365–416 (1963)Google Scholar
  10. 10.
    Murakami, S.: Cohomology groups of vector-valued forms on symmetric spaces. Lecture notes, University of Chicago, 1966Google Scholar
  11. 11.
    Milnor, J.: Singular points of complex hypersurfaces. Ann. Math. Stud., vol. 61. Princeton University Press 1968Google Scholar
  12. 12.
    Raghunathan, M.S.: Discrete subgroups of Lie groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 68. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  13. 13.
    Thurston, W.P.: The geometry and topology of three-manifolds. Princeton University Lecture Notes, 1978Google Scholar
  14. 14.
    Tits, J.: Free subgroups in linear groups. J. Algebra20, 250–270 (1972)Google Scholar
  15. 15.
    Webster, S.M.: On mapping ann-ball into an (n+1)-ball in complex space. Pacific J. Math.81, 267–272 (1979)Google Scholar
  16. 16.
    Weil, A.: On discrete subgroups of Lie groups. Ann. Math.72 (2), 369–384 (1960)Google Scholar
  17. 17.
    Zimmer, R.: Ergodic theory and semisimple groups. Monographs in Mathematics. Boston: Birkhäuser, 1985Google Scholar
  18. 18.
    Artin, M.: On the solutions of analytic equations. Invent. Math.5, 277–291 (1968)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • W. M. Goldman
    • 1
  • J. J. Millson
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations