Inventiones mathematicae

, Volume 54, Issue 1, pp 81–100 | Cite as

Reduction of Hamiltonian systems, affine Lie algebras and Lax equations

  • A. G. Reyman
  • M. A. Semenov-Tian-Shansky


Hamiltonian System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, M.: On a trace functional for formal pseudodifferential operators and the symplectic structure for Korteweg-de-Vries type equations. Inventiones math.50, 219–248 (1979)Google Scholar
  2. 2.
    Arnol'd, V.I.: Mathematical methods of classical mechanics. Moscow: “Nauka”, 1974 (Russian)Google Scholar
  3. 3.
    Duflo, M.: Operateurs différentiels bi-invariants sur un groupe de Lie. Ann. Sci. École Norm. Sup., 4e série10, 1323–1367 (1977)Google Scholar
  4. 4.
    Gohberg, I.Z., Feldman, I.A.: Convolution equations and projectional methods of their solution. Moscow: “Nauka”, 1971 (Russian)Google Scholar
  5. 5.
    Kac, V.G.: Simple irreducible graded Lie algebras of finite growth. Math. USSR, Izv.A2, 1271–1311 (1978)Google Scholar
  6. 6.
    Kac, V.G.: Automorphisms of finite order of semisimple Lie algebras. Functional analysis and its applications,3, 94–96 (1969)Google Scholar
  7. 7.
    Kazhdan, D., Kostant, B., Sternberg, S.: Hamiltonian group actions and dynamical systems of Calogero type. Comm. Pure Appl. Math.,31, 481–508 (1978)Google Scholar
  8. 8.
    Kirillov, A.A.: Elements de la théorie des représentations. Moscou: Editions Mir, 1974Google Scholar
  9. 9.
    Kostant, B.: On Whittaker vectors and representation theory. Inventiones math.,48, 101–184 (1978)Google Scholar
  10. 10.
    Kostant, B.: Quantization and unitary representations I. In: Lecture Notes in Mathematics, v. 170, pp. 87–208. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  11. 11.
    Kritchever, I.M.: Algebraic curves and nonlinear difference equations. Uspekhi Mat. Nauk33, 215–216 (1978) (Russian)Google Scholar
  12. 12.
    Manakov, S.V.: A notice concerning the integration of Euler's equation for then-dimensional rigid body. Funct. Anal. and its Applications,10, 93–95 (1968)Google Scholar
  13. 13.
    Mischenko, A.S., Fomenko, A.T.: Euler equations on finite-dimensional Lie groups. Izwestija AN SSSR (ser. matem.)42, 396–415 (1978) (Russian)Google Scholar
  14. 14.
    Moody, R.V.: A new class of Lie algebras. J. Algebra10, 211–230 (1968)CrossRefGoogle Scholar
  15. 15.
    Moser, J.: Various aspects of integrable Hamiltonian systems. preprintGoogle Scholar
  16. 16.
    Olshanetsky, M.A., Perelomov, A.M.: Explicit solutions of the classical generalized Toda models. Preprint ITEP-157, 1978Google Scholar
  17. 17.
    Reyman, A.G., Semenov-Tian-Shansky, M.A., Frenckel, I.B.: Affine Lie algebras and completely integrable Hamiltonian systems, Sov. Math. Doklady ANSSSR247, 802–805 (1979) (Russian) =Sov. Math. (Doklady), in press (1979)Google Scholar
  18. 18.
    Shubov, V.I.: On decomposition of the quasiregular representations of Lie groups via the orbits' method. Zapisky Nauchnych Seminarov LOMI37, 77–99 (1973) (Russian)Google Scholar
  19. 19.
    Zakharov, V.E., Mikhailov, A.V.: Two-dimensional relativistic models of classical field theory. ZETP,74, 1953–1973 (1978) (Russian)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • A. G. Reyman
    • 1
  • M. A. Semenov-Tian-Shansky
    • 1
  1. 1.Leningrad Branch of the V.A. Steklov Mathematical InstituteLeningradUSSR

Personalised recommendations