Numerische Mathematik

, Volume 50, Issue 3, pp 337–352

Spline collocation for singular integro-differential equations over (0.1)

  • Gunther Schmidt
Article

Summary

This paper analyses the convergence of spline collocation methods for singular integro-differential equations over the interval (0.1). As trial functions we utilize smooth polynomial splines the degree of which coincides with the order of the equation. Depending on the choice of collocation points we obtain sufficient and even necessary conditions for the convergence in sobolev norms. We give asymptotic error estimates and some numerical results.

Subject Classifications

AMS(MOS): 65R20 CR: G1.9 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dang, D., Norrie, D.: A finite element method for the solution of singular integral equations. Comput. Math. Appl.4, 219–224 (1978)Google Scholar
  2. 2.
    Elschner, J.: Galerkin methods with splines for singular integral equations over (0,1). Numer. Math.43, 265–281 (1984)Google Scholar
  3. 3.
    Gerasoulis, A.: The use of piecewise quadratic polynomials for the solution of singular integral equations of Cauchy type. Comput Math. Appl.8, 15–22 (1982)Google Scholar
  4. 4.
    Gerasoulis, A., Srivastav, R.P.: A method for the numerical solution of singular integral equations with a principal value integral. Int. J. Eng. Sci.19, 1293–1298 (1981)Google Scholar
  5. 5.
    Gohberg, I., Krupnik, N.: Einführung in die Theorie der eindimensionalen singulären Integraloperatoren. Basel: Birkhäuser 1979Google Scholar
  6. 6.
    Jen, E., Srivastav, R.: Cubic splines and approximate solution of singular integral equations. Math. Comput.37, 417–423 (1981)Google Scholar
  7. 7.
    Junghanns, P., Silbermann, B.: Zur Theorie der Näherungsverfahren für singuläre Integralgleichungen auf Intervallen. Math. Nachr.103, 199–244 (1981)Google Scholar
  8. 8.
    Junghanns, P., Silbermann, B.: Local theory of the collocation method for the approximate solution of singular integral equations. I. Integral Equations. Oper. Theory7, 791–807 (1984)Google Scholar
  9. 9.
    Mus'chelischwili, N.I.: Singuläre Integralgleichungen. Berlin: Akademie-Verlag 1965Google Scholar
  10. 10.
    Prößdorf, S.: Ein Lokalisierungsprinzip in der Theorie der Splineapproximationen und einige Anwendungen. Math. Nachr.119, 239–255 (1984)Google Scholar
  11. 11.
    Prößdorf, S., Rathsfeld, A.: A spline colocation method for singular integral equations with piecewise continuous coefficients. Integral Equ. a. Operator Th.7, 536–560 (1984)Google Scholar
  12. 12.
    Prößdorf, S., Schmidt, G: A finite element collocation method for singular integral equations. Math. Nachr.100, 33–60 (1981)Google Scholar
  13. 13.
    Schmidt, G.: On spline collocation methods for boundary integral equations in the plane. Math. Methods in Appl. Sci.7, 74–89 (1985)Google Scholar
  14. 14.
    Schmidt, G.: On ε-collocation for pseudodifferential equations on a closed curve. Math. Nachr., to appearGoogle Scholar
  15. 15.
    Washizu, K., Ikegawa, M.: Finite element technique in lifting surface problems. In: International symposium on finite element methods in flow problems, Univ. of Wales, Swansea 1974Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Gunther Schmidt
    • 1
  1. 1.Karl-Weierstraß-Institut für Mathematik der Akademie der Wissenschaften der DDRBerlinGerman Democratic Republic

Personalised recommendations