Advertisement

Inventiones mathematicae

, Volume 85, Issue 3, pp 515–543 | Cite as

Lefschetz-Riemann-Roch theorem and coherent trace formula

  • R. W. Thomason
Article

Keywords

Trace Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Atiyah, M., Bott, R.: A Lefschetz fixed point theorem for elliptic operators. Ann. Math.86, 374–407 (1967);87, 451–491 (1968)Google Scholar
  2. 2.
    Atiyah, M., Segal, G.: The index of elliptic operators II. Ann. Math.87, 531–545 (1968)Google Scholar
  3. 3.
    Atiyah, M., Segal, G.: EquivariantK-theory and completion. J. Diff. Geom.3, 1–18 (1969)Google Scholar
  4. 4.
    Baum, P., Fulton, W., Quart, G.: Lefschetz-Riemann-Roch for singular varieties. Acta Math.143, 193–211 (1979)Google Scholar
  5. 5.
    Demazure, M.: Désingularisation des variétés de Schubert géneralisées. Ann. Sci. E.N.S.7, 52–88 (1974)Google Scholar
  6. 6.
    Donovan, P.: The Lefschetz-Riemann-Roch formula. Bull. Soc. Math. Fr.97, 257–273 (1969)Google Scholar
  7. 7.
    Gillet, H.: Riemann-Roch theorems for higher algebraicK-theory. Adv. Math.49, 203–289 (1981)Google Scholar
  8. 8.
    Gillet, H.: Comparison ofK-theory spectral sequences with applications. AlgebraicK-theory: Evanston 1980. Lect. Notes Math.854, 141–167 (1981)Google Scholar
  9. 9.
    Gray, J.: Closed categories, lax limits, and homotopy limits. J. Pure Applied Algebra19, 127–158 (1980)Google Scholar
  10. 10.
    Hinich, V., Schechtman, V. (also Khinich, Shekhtman, etc): Geometry of a category of complexes and algebraicK-theory. Preprint, Russian version (1983), English version (1984)Google Scholar
  11. 11.
    Iversen, B.: A fixed point formula for action of tori on algebraic varieties. Invent. Math.16, 229–236 (1972)Google Scholar
  12. 12.
    Knutson, D.: Algebraic Spaces. Lect. Notes Math. 203 (1971)Google Scholar
  13. 13.
    Luna, D.: Slices étales. Bull. Soc. Math. Fr. Memoire33, 81–105 (1973)Google Scholar
  14. 14.
    Moonen, B.: Das Lefschetz-Riemann-Roch-Theorem fur singulare Varietaten. Bonner Mathematische Schriften 106 (1978)Google Scholar
  15. 15.
    Mumford, D., Fogarty, J.: Geometric invariant theory, 2nd ed. Springer Verlag (1982)Google Scholar
  16. 16.
    Nielsen, H.: Diagonalizably linearized coherent sheaves. Bull. Soc. Math. Fr.102, 85–97 (1974)Google Scholar
  17. 17.
    Quart, G.: Localization theorems inK-theory for singular varieties. Acta. Math.143, 213–217 (1979)Google Scholar
  18. 18.
    Quillen, D.: Higher algebraicK-theory I. HigherK-theories. Lect. Notes Math.341, 85–147 (1973)Google Scholar
  19. 19.
    Segal, G.: EquivariantK-theory. Publ. Math. IHES34, 129–151 (1968)Google Scholar
  20. 20.
    Segal, G.: The representation ring of a compact Lie group. Publ. Math. IHES34, 113–128 (1968)Google Scholar
  21. 21.
    Seshadri, C.: Geometric reductivity over arbitrary base. Adv. Math.26, 225–274 (1977)Google Scholar
  22. 22.
    Sumihiro, H.: Equivariant completion II. J. Math. Kyoto Univ.15, 573–605 (1975)Google Scholar
  23. 23.
    Thomason, R.: Riemann-Roch for algebraic vs. topologicalK-theory. J. Pure Appl. Alg.27, 87–109 (1983)Google Scholar
  24. 24.
    Thomason, R.: AlgebraicK-theory and etale cohomology. 2nd ed. preprint (1984), Ann. Sci. Ec. Norm. Super. Vol.18, (1985)Google Scholar
  25. 25.
    Thomason, R.: AlgebraicK-theory of group scheme actions. (To appear, proceedings of 1983 Princeton topology conference in honor of J. Moore, Ann. Math. Study)Google Scholar
  26. 26.
    Thomason, R.: The homotopy limit problem. Proceedings of the Northwestern Homotopy Theory Conference. Contemp. Math.19, 407–419 (1983)Google Scholar
  27. 27.
    Waldhausen, F.: AlgebraicK-theory of spaces. Algebraic and Geometric Topology. Lect. Notes Math.1126, 318–419 (1985)Google Scholar
  28. 28.
    Andersen, H.H.: Schubert varieties and Demazure's character formula. Invent. Math.79, 611–618 (1985)Google Scholar
  29. 29.
    Bousfield, A.K., Kan, D.M.: Homotopy limits, completions, and localizations. Lect. Notes Math.304 (1972)Google Scholar
  30. 30.
    Hartshorne, R.: Residues and duality. Lect. Notes Math. 20 (1966)Google Scholar
  31. 31.
    Joseph, A.: On the Demazure character formula. Ann. Sci. Ec. Norm. Super.18 (1985)Google Scholar
  32. 32.
    Segal, G.: Categories and cohomology theories. Topology13, 293–312 (1974)Google Scholar
  33. 33.
    Thomason, R.: Comparison of equivariant algebraic and, topologicalK-theory.Google Scholar
  34. 34.
    EGA Grothendieck, A., Dieudonne, J.: Eléments de géométrie algébrique. Publ. Math. IHES No. 4, 8, 11, 17, 20, 24, 28, 32, new edition of I, Springer Verlag (1971)Google Scholar
  35. 35.
    SGA 3 Demazure, M., Grothendieck, A.: Schémas en groupes. Lect. Notes Math.151, 152, 153 (1970)Google Scholar
  36. 36.
    SGA 6 Berthelot, P., Grothendieck, A., Illusie, L.: Théorie des intersections et Théorème de Riemann-Roch. Lect. Notes Math.225 (1971)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • R. W. Thomason
    • 1
  1. 1.Department of MathematicsThe John Hopkins UniversityBaltimoreUSA

Personalised recommendations