Inventiones mathematicae

, Volume 59, Issue 1, pp 77–94

Unitary reflection groups and cohomology

  • Peter Orlik
  • Louis Solomon


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benard, M.: Characters and Schur indices of the unitary reflection group [321]3. Pacific J. Math.58, 309–321 (1975)Google Scholar
  2. 2.
    Benard, M.: Schur indices and splitting fields of the unitary reflection groups. J. Algebra38, 318–342 (1976)Google Scholar
  3. 3.
    Bourbaki, N.: Groupes et algèbres de Lie, Chapitres 4, 5 et 6. Paris: Hermann 1968Google Scholar
  4. 4.
    Brieskorn, E.: Sur les groupes de tresses (d'après V.I. Arnol'd), Séminaire Bourbaki 24e année, 1971/2, Springer Lecture Notes No. 317, Berlin: Springer Verlag 1973Google Scholar
  5. 5.
    Chevalley, C.: Invariants of finite groups generated by relfections. Amer. J. Math.77, 778–782 (1955)Google Scholar
  6. 6.
    Coleman, A.J.: The Betti numbers of the simple Lie groups, Canadian J. Math.10, 349–356 (1958)Google Scholar
  7. 7.
    Coxeter, H.S.M.: The product of the generators of a finite group generated by reflections. Duke Math. J.18, 765–782 (1951)Google Scholar
  8. 8.
    Coxeter, H.S.M.: Regular Complex Polytopes. Cambridge: Cambridge Univ. Press, 1974Google Scholar
  9. 9.
    Flatto, L.: Invariants of finite reflection groups. L'Enseignement math.24, 237–292 (1978)Google Scholar
  10. 10.
    Gutkin, E.A.: Matrices connected with groups generated by mappings. Funct. Anal. and Appl. 7, 153–154 (1973) = Funkt. Anal. i Prilozen.7, 81–82 (1973)Google Scholar
  11. 11.
    Koster, D.W.: Complex Reflection Groups. Thesis, Madison: University of Wisconsin 1975Google Scholar
  12. 12.
    Orlik, P., Solomon, L.: Combinatorics and topology of complements of hyperplanes. Invent. math.56, 167–189 (1980)Google Scholar
  13. 13.
    Parthasarathy, K.R., Ranga Rao, R., Varadarajan, V.S.: Representations of complex semi-simple Lie groups and Lie algebras. Annals of Math.85, 383–429 (1967)Google Scholar
  14. 14.
    Shephard, G.C., Todd, J.A.: Finite unitary relfection groups. Canadian J. Math.6, 274–304 (1954)Google Scholar
  15. 15.
    Solomon, L.: Invariants of finite reflection groups. Nagoya Math. J.22, 57–64 (1963)Google Scholar
  16. 16.
    Solomon, L.: Invariants of Euclidean reflection groups. Trans. Amer. Math. Soc.113, 274–286 (1964)Google Scholar
  17. 17.
    Springer, T.A.: Regular elements of finite reflection groups. Invent. math.25, 159–198 (1974)Google Scholar
  18. 18.
    Stanley, R.P.: Relative invariants of finite groups generated by pseudoreflections. J. Algebra49, 134–148 (1977)Google Scholar
  19. 19.
    Steinberg, R.: Finite reflection groups. Trans. Amer. Math. Soc.91, 493–504 (1959)Google Scholar
  20. 20.
    Steinberg, R.: Differential equations invariant under finite reflection groups. Trans. Amer. Math. Soc.112, 392–400 (1964)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Peter Orlik
    • 1
  • Louis Solomon
    • 1
  1. 1.Mathematics DepartmentUniversity of WisconsinMadisonUSA

Personalised recommendations