Inventiones mathematicae

, Volume 50, Issue 2, pp 103–128

Algebraic surfaces of general type with smallc12. IV

  • Eiji Horikawa
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bombieri, E.: Canonical models of surfaces of general type. Publ. Math. IHES42, 171–219 (1973)Google Scholar
  2. 2.
    Fujiki, A., Nakano, S.: Supplement to: On the inverse of monoidal transformation. Publ. Res. Inst. Math. Sci. Kyoto Univ.7, 637–644 (1971/72)Google Scholar
  3. 3.
    Grothendieck, A.: Éléments de géométrie algébrique, IV (seconde partie). Publ. Math. IHES24 (1965)Google Scholar
  4. 4.
    Horikawa, E.: On deformations of holomorphic maps, I, II, III. J. Math. Soc. Japan25, 372–396 (1973), ibid.26, 647–667 (1974), Math. Ann.222, 275–282 (1976)Google Scholar
  5. 5.
    Horikawa, E.: On the number of moduli of certain algebraic surfaces of general type. J. Fac. Sci. Univ. Tokyo22, 67–78 (1975)Google Scholar
  6. 6.
    Horikawa, E.: On deformations of quintic surfaces. Inventiones math31, 43–85 (1975) (referred to as [Q])Google Scholar
  7. 7.
    Horikawa, E.: Algebraic surfaces of general type with smallc 12. I, II, III. Ann. of Math.104, 357–387 (1976), Inventiones math.37, 121–155 (1976), ibid.47, 209–248 (1978)Google Scholar
  8. 8.
    Horikawa, E.: On deformations of rational maps. J. Fac. Sci. Univ. Tokyo23, 581–600 (1976)Google Scholar
  9. 9.
    Horikawa, E.: On algebraic surfaces with pencils of curves of genus 2. In: Complex Analysis and Algebraic Geometry, a volume dedicated to K. Kodaira, pp. 79–90, Tokyo and Cambridge: Iwanami Shoten, Publishers and Cambridge University Press, 1977 (referred to as [P])Google Scholar
  10. 10.
    Kodaira, K.: On characteristic systems of families of surfaces with ordinary singularities in a projective space. Amer. J. Math.87, 227–255 (1965)Google Scholar
  11. 11.
    Kodaira, K., Nirenberg, L., Spencer, D.C.: On the existence of deformations of complex structures. Ann. of Math.68, 450–459 (1958)Google Scholar
  12. 12.
    Kuranishi, M.: Deformations of compact complex manifolds. Lecture Notes, Université de Montréal, 1971Google Scholar
  13. 13.
    Miyanishi, M., Nakamura, K.: On the structure of minimal surfaces of general type with 2p g=(K 2)+2. J. Math. Kyoto Univ.18, 137–171 (1978)Google Scholar
  14. 14.
    Mumford, D.: Theta characteristics of an algebraic curve. Ann. Sci. Éc. Norm. Sup. 4e sér.4, 181–192 (1971)Google Scholar
  15. 15.
    Nagata, M.: On rational surfaces I. Mem. Coll. Sci. Univ. Kyoto32, 351–370 (1960)Google Scholar
  16. 16.
    Prill, D.: The fundamental group of the complement of an algebraic curve. Manuscripta math.14, 163–172 (1974)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Eiji Horikawa
    • 1
  1. 1.Department of Mathematics, Faculty of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations