Inventiones mathematicae

, Volume 58, Issue 3, pp 211–215 | Cite as

The Steinberg function of a finite Lie algebra

  • T. A. Springer


Steinberg Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borel, A.: Linear algebraic groups. Benjamin 1969Google Scholar
  2. 2.
    Borel, A. et al.: Seminar on algebraic groups and related finite groups. Lect. Notes in Math. no. 131, Berlin, Heidelberg, New York: Springer Verlag, 1970Google Scholar
  3. 3.
    Borel, A., Tits, J.: Groupes réductifs. Publ. Math. I.H.E.S. no.27, 55–152 (1965)Google Scholar
  4. 4.
    Borel, A., Tits, J.: Éléments unipotents et sous-groupes paraboliques de groupes réductifs I. Invent. Math.12, 95–104 (1972)Google Scholar
  5. 5.
    Curtis, C.W., Lehrer, G.I., Tits, J.: Spherical buildings and the character of the Steinberg representation. Inv. Math.58, 201–210 (1980)Google Scholar
  6. 6.
    Feit, W.: Characters of finite groups. Benjamin 1967Google Scholar
  7. 7.
    Kempf, G.: Instability in invariant theory. Ann. of Math.108, 299–316 (1978)Google Scholar
  8. 8.
    Springer, T.A.: The unipotent variety of a semi-simple group. Bombay Colloq. on Alg. Geometry, Oxford Univ. Press 1969Google Scholar
  9. 9.
    Springer, T.A.: A formula for the characteristic function of the unipotent set of a finite Chevalley group. To appear in J. of Alg.Google Scholar
  10. 10.
    Steinberg, R.: Endomorphisms of linear algebraic groups. Mem. Amer. Math. Soc. no. 80 (1968)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • T. A. Springer
    • 1
  1. 1.Mathematisch InstituutRijksuniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations