Inventiones mathematicae

, Volume 58, Issue 3, pp 211–215 | Cite as

The Steinberg function of a finite Lie algebra

  • T. A. Springer
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borel, A.: Linear algebraic groups. Benjamin 1969Google Scholar
  2. 2.
    Borel, A. et al.: Seminar on algebraic groups and related finite groups. Lect. Notes in Math. no. 131, Berlin, Heidelberg, New York: Springer Verlag, 1970Google Scholar
  3. 3.
    Borel, A., Tits, J.: Groupes réductifs. Publ. Math. I.H.E.S. no.27, 55–152 (1965)Google Scholar
  4. 4.
    Borel, A., Tits, J.: Éléments unipotents et sous-groupes paraboliques de groupes réductifs I. Invent. Math.12, 95–104 (1972)Google Scholar
  5. 5.
    Curtis, C.W., Lehrer, G.I., Tits, J.: Spherical buildings and the character of the Steinberg representation. Inv. Math.58, 201–210 (1980)Google Scholar
  6. 6.
    Feit, W.: Characters of finite groups. Benjamin 1967Google Scholar
  7. 7.
    Kempf, G.: Instability in invariant theory. Ann. of Math.108, 299–316 (1978)Google Scholar
  8. 8.
    Springer, T.A.: The unipotent variety of a semi-simple group. Bombay Colloq. on Alg. Geometry, Oxford Univ. Press 1969Google Scholar
  9. 9.
    Springer, T.A.: A formula for the characteristic function of the unipotent set of a finite Chevalley group. To appear in J. of Alg.Google Scholar
  10. 10.
    Steinberg, R.: Endomorphisms of linear algebraic groups. Mem. Amer. Math. Soc. no. 80 (1968)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • T. A. Springer
    • 1
  1. 1.Mathematisch InstituutRijksuniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations