Advertisement

Numerische Mathematik

, Volume 41, Issue 2, pp 165–175 | Cite as

Smoothing the extrapolated midpoint rule

  • Lawrence F. Shampine
  • Lorraine S. Baca
The Uniform Stability of Singularly Perturbed Discrete and Continuous Boundary Value Problems

Summary

The extrapolated midpoint rule is a popular way to solve the initial value problem for a system of ordinary differential equations. As originally formulated by Gragg, the results are smoothed to remove the weak instability of the midpoint rule. It is shown that this smoothing is not necessary. A cheaper smoothing scheme is proposed. A way to exploit smoothing to increase the robustness of extrapolation codes is formulated.

Subject Classifications

AMS(MOS): 65LO5 CR: 5.17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bader, G., Deuflhard, P.: A semi-implicit mid-point rule for stiff systems of ordinary differential equations. Preprint Nr. 114. University of Heidelberg, 1981Google Scholar
  2. 2.
    Bulirsch, R., Stoer, J.: Numerical treatment of ordinary differential equations by extrapolation methods. Numer. Math.8, 1–13 (1966(Google Scholar
  3. 3.
    Deuflhard, P.: Order and stepsize control in extrapolation methods. Numer. Math. (to appear)Google Scholar
  4. 4.
    Gragg, W.B.: Repeated extrapolation to the limit in the numerical solution of ordinary differential equations. Thesis, University of California at Los Angeles, 1964Google Scholar
  5. 5.
    Gragg, W.B.: On extrapolation algorithms for ordinary initial value problems. SIAM J. Numer. Anal.2, 384–403 (1965)Google Scholar
  6. 6.
    Hussels, H.G.: Schrittweitensteuerung bei der Integration gewöhnlicher Differentialgleichungen mit Extrapolationsverfahren. Diplomarbeit Universität Köln, Math. Inst. 1973Google Scholar
  7. 7.
    Milne, W.E., Reynolds, R.R.: Stability of a numerical solution of differential equations. J. ACM6, 196–203 (1959) and7, 45–56 (1960)Google Scholar
  8. 8.
    Shampine, L.F.: Limiting precision in differential equation solvers. Math. Comput.28, 141–144 (1974)Google Scholar
  9. 9.
    Shampine, L.F.: Implementation of Rosenbrock codes. ACM Trans. Math. Software8, 93–113 (1982)Google Scholar
  10. 10.
    Shampine, L.F.: Type-insensitive ODE codes based on extrapolation methods. SIAM J. Sci. Stat. Comput. (to appear)Google Scholar
  11. 11.
    Shampine, L.F., Baca, L.S.: Should the extrapolated midpoint rule be smoothed? Report SAND 82-0317. Sandia National Laboratories, Albuquerque, NM, 1982Google Scholar
  12. 12.
    Shampine, L.F., Watts, H.A., Davenport, S.M.: Solving nonstiff ordinary differential equations — the state of the art. SIAM Rev.18, 376–411 (1976)Google Scholar
  13. 13.
    Stoer, J.: Extrapolation methods for the solution of initial value problems and their practical realization, pp. 1–21. In: Proc. Conf. on Numer. Soln of Ordinary Differential Equations, University of Texas at Austin. Nr. 362 in Lecture Notes in Math. Berlin, Heidelberg, New York: Springer, 1974Google Scholar
  14. 14.
    Stoer, J., Bulirsch, R.: Introduction to numerical analysis. Berlin, Heidelberg, New York: Springer, 1980Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Lawrence F. Shampine
    • 1
  • Lorraine S. Baca
    • 1
  1. 1.Numerical Mathematics DivisionSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations