Inventiones mathematicae

, Volume 43, Issue 1, pp 69–82

Exponential sums with multiplicative coefficients

  • H. L. Montgomery
  • R. C. Vaughan
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Daboussi, H.: Fonctions multiplicatives presque périodiques B. D'après un travail commun avec Hubert Delange. Journées Arithmétique de Bordeaux (Conf. Univ. Bordeaux, 1974), 321–324. Astérisque, 24–25. Soc. Math France, Paris, 1975. See also Daboussi, H., Delange, H.: Quelques propriétés des fonctions multiplicatives de module au plus égal à 1, C.R. Acad. Sci. Paris Ser. A278, 657–660 (1974)Google Scholar
  2. 2.
    Davenport, H.: On some infinite series involving arithmetical functions (II). Quart. J. Math.8, 313–320 (1937)Google Scholar
  3. 3.
    Davenport, H.: Multiplicative number theory. Chicago: Markham, 1966Google Scholar
  4. 4.
    Halász, G.: On the distribution of additive and the mean values of multiplicative arithmetic functions. Studia Sci. Math. Hungar.6, 211–233 (1971)Google Scholar
  5. 5.
    Halberstam, H., Richert, H.-E.: Sieve methods. London: Academic Press 1974Google Scholar
  6. 6.
    Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers, 4th ed. London: Oxford University Press 1962Google Scholar
  7. 7.
    Littlewood, J.E.: On the class number of the corpus 82-1. Proc. London Math. Soc.27, 358–372 (1928)Google Scholar
  8. 8.
    Paley, R.E.A.C.: A theorem on characters. J. London Math. Soc.7, 28–32 (1932)Google Scholar
  9. 9.
    Pólya, G.: Über die Verteilung der quadratischen Reste und Nichtreste. Göttinger Nachrichten 1918, pp. 21–29Google Scholar
  10. 10.
    Vinogradov, I.M.: Über die Verteilung der quadratischen Reste und Nichtreste. J. Soc. Phys. Math. Univ. Permi2, 1–14 (1919)Google Scholar
  11. 11.
    Vinogradov, I.M.: The method of trigonometrical sums in the theory of numbers. New York: Interscience 1954Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • H. L. Montgomery
    • 1
  • R. C. Vaughan
    • 2
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.Department of MathematicsImperial College of Science and TechnologyLondonUK

Personalised recommendations