Advertisement

Inventiones mathematicae

, Volume 21, Issue 3, pp 213–221 | Cite as

Configuration-spaces and iterated loop-spaces

  • Graeme Segal
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barratt, M. G., Priddy, S.: On the homology of non-connected monoids and their associated groups. Comment. Math. Helvet.47, 1–14 (1972).Google Scholar
  2. 2.
    Boardman, J. M., Vogt, R. M.: Homotopy-everythingH-spaces. Bull. Amer. Math. Soc.74, 1117–1122 (1968).Google Scholar
  3. 3.
    Dold, A.: Partitions of unity in the theory of fibrations. Ann. of Math.78, 223–255 (1963).Google Scholar
  4. 4.
    Giffen, C.: To appear.Google Scholar
  5. 5.
    James, I. M.: Reduced product spaces. Ann. of Math.62, 170–197 (1955).Google Scholar
  6. 6.
    May, J. P. The geometry of iterated loop spaces. Springer Lecture Notes in Mathematics271 Berlin-Heidelberg-New York 1972.Google Scholar
  7. 7.
    Milgram, R. J.: Iterated loop spaces. Ann. of Math.84, 386–403 (1966).Google Scholar
  8. 8.
    Quillen, D. G: The group completion of a simplicial monoid. To appear.Google Scholar
  9. 9.
    Segal, G. B.: Classifying spaces and spectral sequences. Publ. Math. I.H.E.S. Paris34, 105–112 (1968).Google Scholar
  10. 10.
    Segal, G. B.: Categories and cohomology theories. Topology.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Graeme Segal
    • 1
  1. 1.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations