Advertisement

Inventiones mathematicae

, Volume 49, Issue 3–4, pp 199–297 | Cite as

p-AdicL-functions for CM fields

  • Nicholas M. Katz
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 0.
    Cassels, J.W.S., Fröhlich, A.: Algebraic Number Theory, London: Academic Press 1967Google Scholar
  2. 1.
    Coates, J., Sinnott, W.: Onp-adicL-functions over real quadratic fields. Inv. Math.25, 252–279 (1974)Google Scholar
  3. 2.
    Damerell, R.M.:L-functions of elliptic curves with complex multiplication. I. Acta Arith.17, 287–301 (1970)Google Scholar
  4. 3.
    Deligne P., Ribet, K.:p-adicL-functions for totally real fields.Google Scholar
  5. 4.
    Hecke, E.: Analytische Funktionen und Algebraische Zahlen. Zweiter Teil, Abh. Math. Sem. Hamb. Bd. 3 (1924), 213–236, No. 20 in Math. Werke., Göttingen: Vandenhoeck & Rupert 1970Google Scholar
  6. 5.
    Iwasawa, K.: Lectures onp-adicL-functions. Annals of Math. Studies 74, Princeton Univ. Press, 1972Google Scholar
  7. 6.
    Katz, N.: Travaux de Dwork, Exposé 409, Séminaire N. Bourbaki 1971/72. Springer Lecture Notes in Math.317, 167–200 (1973)Google Scholar
  8. 7.
    Katz, N.:p-adic properties of modular schemes and modular forms, Proc. 1972 Antwerp Summer School, Springer Lecture Notes in Math.350, 70–189 (1973)Google Scholar
  9. 8.
    Katz, N.: Higher congruences between modular forms. Ann of Math.101, 332–367 (1975)Google Scholar
  10. 9.
    Katz, N.:p-adicL-functions via moduli of elliptic curves, Proc. 1974AMS Arcata Summer Institute in Algebraic Geometry, PSPM 29, AMS, Providence, 1975Google Scholar
  11. 10.
    Katz, N.:p-adic interpolation of real analytic Eisenstein series. Ann. of Math.104, 459–571 (1976)Google Scholar
  12. 11.
    Kubota, T., Leopoldt, H.W.: Einep-adische Theorie der Zetawerte I, J. Reine Ang. Math.214/215, 328–339 (1964)Google Scholar
  13. 12.
    Manin, J.I.: Periods of parabolic forms andp-adic Hecke series, Math. Sbornik V, 93 (134), No. 3 (11), 1973Google Scholar
  14. 13.
    Manin, J.I., Vishik, S.:p-adic Hecke series for quadratic imaginary fields, Math. Sbornik V. 95 (137), No. 3 (11), 1974Google Scholar
  15. 14.
    Manin, J.I.: Non-archimedean integration andp-adic Hecke-LanglandsL-series, Russian Math. Surveys XXXI,1 (187), 5–54 (1976)Google Scholar
  16. 15.
    Mazur, B., Swinnerton-Dyer, H.P.F.: Arithmetic of Weil Curves Inv. Math.25, 1–61 (1974)CrossRefGoogle Scholar
  17. 16.
    Milnor, J.W., Stasheff, J.D.: Characteristic Classes, Annals of Math. Studies 76, Princeton University Press, 1974Google Scholar
  18. 17.
    Rapoport, M.: Compactifications de l'espace de modules de Hilbert-Blumenthal Thèse, Université de Paris-Sud (Orsay), 1976Google Scholar
  19. 18.
    Ribet, K.:p-adic interpolation via Hilbert modular forms, in Proc. 1974 AMS Arcata Summer Institute on Algebraic Geometry, PSPM 29, AMS, Providence, 1975Google Scholar
  20. 19.
    Serre, J.-P.: Congruences et formes modulaires, Exposé 416, Séminaire N. Bourbaki 1971/72, Springer Lecture Notes in Math.317, 319–338 (1973)Google Scholar
  21. 20.
    Serre, J.-P.: Formes modulaires et fonctions zêtap-adiques, Proc. 1972 Antwerp Summer School, Springer Lecture Notes in Math.350, 191–268 (1973)Google Scholar
  22. 21.
    Serre, J.-P.: Abelianl-adic Representations and Elliptic Curves, W.A. Benjamin Inc., New York, 1968Google Scholar
  23. 22.
    Serre, J.-P., Tate, J.: Good reduction of abelian varieties, Ann. of Math (2)88, 492–517 (1968)Google Scholar
  24. 23.
    Shimura, G., Taniyama, Y.: Complex Multiplication of Abelian Varieties and its Applications to Number Theory, Pub. Math. Soc. Japan 6, Math. Soc. Japan, Tokyo, 1961Google Scholar
  25. 24.
    Shimura, G.: On some arithmetic properties of modular forms of one and several variables., Ann. of Math.102, 491–515 (1975)Google Scholar
  26. 25.
    Shimura, G.: Sur les intégrales attachées aux formes automorphes, J. Math. Soc. Japan11, 291–311 (1959)Google Scholar
  27. 26.
    Tate, J.: Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T. Honda), Exposé 352, Séminaire N. Bourbaki, 1968/69, Springer Lecture, Notes in Math 179 (1971)Google Scholar
  28. 27.
    Weil, A.: On a certain type of characters of the idèle-class group of an algebraic number field, Proc. Int'l. Symposium on Alg. No. Theory, Tokyo & Nikko, 1955, Science Council of Japan, Tokyo, 1956Google Scholar
  29. 28.
    Weil, A.: Elliptic functions according to Eisenstein, lectures at Institute for Advanced Study, 1974Google Scholar
  30. 29.
    Mumford, D.: Geometric Invariant Theory, Springer-Verlag, 1965Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Nicholas M. Katz
    • 1
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations