Advertisement

Inventiones mathematicae

, Volume 27, Issue 3, pp 165–189 | Cite as

Versal deformations and algebraic stacks

  • M. Artin
Article

Keywords

Versal Deformation Algebraic Stack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, M.: The implicit function theorem in algebraic geometry. Algebraic geometry. Papers presented at the Bombay Colloquium, pp. 13–34. Bombay-Oxford: 1969Google Scholar
  2. 2.
    Artin, M.: Algebraic approximation of structures over complete local rings. Pub. Math. I.H.E.S. No. 36, 23–58 (1969)Google Scholar
  3. 3.
    Artin, M.: Algebraization of formal moduli I. Global analysis, pp. 21–71. Tokyo 1969Google Scholar
  4. 4.
    Artin, M.: Construction techniques for algebraic spaces. Actes du Congrès Int. des Math. 1970, pp. 419–423, Paris Gauthiers-Villars 1971Google Scholar
  5. 5.
    Artin, M.: Algebraic construction of Brieskorn's resolutions. J. of Algebra29, 330–348 (1974)Google Scholar
  6. 6.
    Dehgne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Publ. Math. I.H.E.S. No. 36, 75–110 (1969)Google Scholar
  7. 7.
    Demazure, M., Grothendieck, A.: Schémas en groupes I, exposé 5, by P. Gabriel. Lecture Notes in Mathematics151. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  8. 8.
    Elkik, R.: Algébrisation du module formel d'une singularité isolée. Séminaire. E.N.S. 1971–72, exposé 8Google Scholar
  9. 9.
    Elkik, R.: Solutions d'équations à coefficients dans un anneau hensélien. Ann. Sci. École Norm. Sup., Paris,6, 553–603 (1973)Google Scholar
  10. 10.
    Giraud, J.: Cohomologie non abélienne. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  11. 11.
    Illusie, L.: Complexe cotangent et déformations I. Lecture Notes in Mathematics239, Berlin-Heidelberg-New York: Springer 1971Google Scholar
  12. 12.
    Knutson, D.: Algebraic spaces. Lecture Notes in Mathematics203. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  13. 13.
    Kodaira, K.: Pluricanonical systems on algebraic surfaces of general type. J. Math. Soc. Japan20, 170–192 (1968)Google Scholar
  14. 14.
    Mumford, D.: The canonical ring of an algebraic surface, appendix to a paper by 0. Zariski. Ann. of Math.76, 560–615 (1962)Google Scholar
  15. 15.
    Rim, D. S.: Formal deformation theory, Groupes de monodromie en géométrie algébrique exposé 6. Lecture Notes in Mathematics288, Berlin-Heidelberg-New York: Springer 1972Google Scholar
  16. 16.
    Schlessinger, M.: Functors of Artin rings. Trans. A.M.S.130, 208–222 (1968)Google Scholar
  17. 17.
    Schlessinger, M.: On rigid singularities. Rice University Studies59, 147–162 (1973)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • M. Artin
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations