Inventiones mathematicae

, Volume 25, Issue 2, pp 159–198

Regular elements of finite reflection groups

  • T. A. Springer


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benard, M.: On the Schur indices of characters of the exceptional Weyl groups. Ann. of Math.94, 89–107 (1971)Google Scholar
  2. 2.
    Borel, A.: Linear algebraic groups. New York: Benjamin 1969Google Scholar
  3. 3.
    Borel, A.: Seminar in algebraic groups and related finite groups. Lecture Notes in Mathematics131, Berlin-Heidelberg-New York: Springer 1970Google Scholar
  4. 4.
    Bourbaki, N.: Groupes et algèbres de Lie. Chap. IV, V, VI. Paris: Hermann 1968Google Scholar
  5. 5.
    Carter, R. W.: Conjugacy classes in the Weyl groups. Comp. Math.25, 1–59 (1972)Google Scholar
  6. 6.
    Carter, R. W., Elkington, G. B.: A note on the parametrization of conjugacy classes. J. Alg.20, 350–354 (1972)Google Scholar
  7. 7.
    Chevalley, C.: Invariants of finite groups generated by reflections. Am. J. Math.77, 778–782 (1955)Google Scholar
  8. 8.
    Coxeter, H.S.M.: The product of the generators of a finite group generated by reflections. Duke Math. J.18, 765–782 (1951)Google Scholar
  9. 9.
    Dynkin, E. B.: Semisimple subalgebras of semisimple Lie algebras. Am. Math. Soc. Transl. Ser.2, 6 (1957), 111–245 (=Math. Sbornik N.S.30, 349–462 (1952))Google Scholar
  10. 10.
    Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Am. J. Math.81, 973–1032 (1959)Google Scholar
  11. 11.
    Kostant, B.: Lie group representations in polynomial rings. Am. J. Math.85, 327–404 (1963)Google Scholar
  12. 12.
    Mumford, D.: Introduction to algebraic geometry (mimeographed)Google Scholar
  13. 13.
    Noether, E.: Der Endlichkeitssatz der Invarianten endlicher Gruppen. Math. Ann.77, 89–92 (1916)Google Scholar
  14. 14.
    Samuel, P.: Méthodes d'algèbre abstraite en géométrie algébrique. Erg. d. Math.4. Berlin-Heidelberg-New York: Springer 1955Google Scholar
  15. 15.
    Shephard, G. C., Todd, J. A.: Finite unitary reflection groups. Can. J. Math.6, 274–304 (1954)Google Scholar
  16. 16.
    Solomon, L.: Invariants of finite reflection groups. Nagoya Math. J.22, 57–64 (1963)Google Scholar
  17. 17.
    Springer, T. A.: Some arithmetical results on semi-simple Lie algebras. Publ. Math. I.H.E.S.30, 115–141 (1966)Google Scholar
  18. 18.
    Steinberg, R.: Differential equations invariant under finite reflection groups. Trans. Am. Math. Soc.112, 392–400 (1964)Google Scholar
  19. 19.
    Steinberg, R.: Regular elements of semisimple algebraic groups. Publ. Math. I.H.E.S.25, 49–80 (1965)Google Scholar
  20. 20.
    Steinberg, R.: Lectures on Chevalley groups. Yale University, 1967Google Scholar
  21. 21.
    Steinberg, R.: Endomorphisms of linear algebraic groups. Mem. Am. Math. Soc.80 (1968)Google Scholar
  22. 22.
    Weil, A.: Foundations of algebraic geometry. Am. Math. Soc. Colloq. Publ. 29 (2nd ed.), 1962Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • T. A. Springer
    • 1
  1. 1.Mathematisch InstituutRijksuniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations