Inventiones mathematicae

, Volume 41, Issue 1, pp 1–22

The free loop space of globally symmetric spaces

  • Wolfgang Ziller
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Araki, S.: On Bott-SamelsonK-cycles associated with a symmetric space. J. of Math. Osaka University13, 87–133 (1962)Google Scholar
  2. 2.
    Borel, A.: Sur la cohomologie des espaces fibres principaux et des espaces homogenes. Ann. of Math.57, 115–207 (1953)Google Scholar
  3. 3.
    Borel, A., Hirzebruch, F.: Characteristic classes and homogeneous spaces I. Am. J. of Math.80, 459–538 (1958)Google Scholar
  4. 4.
    Bott, R., Samelson, H.: Applications of Morse theory to symmetric spaces. Am. J. of Math.80, 964–1029 (1958)Google Scholar
  5. 5.
    Bott, R.: The stable homotopy of the classical groups. Ann. of Math.70, 313–337Google Scholar
  6. 6.
    Eliasson, H.: Morse theory for closed curves. In: Symp for inf. dim. Topology, Lousiana State University. Ann. of Math. Studies No. 69, 63–77. Princeton University Press 1972Google Scholar
  7. 7.
    Eliasson, H.: Über die Anzahl geschlossener Geodätischer in gewissen Riemannschen Mannigfaltigkeiten. Math. Ann.166, 119–147 (1966)Google Scholar
  8. 8.
    Flaschel, P., Klingenberg, W.: Riemannsche Hilbertmannigfaltigkeiten Periodische Geodätische. Lecture Notes in Math. 282. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  9. 9.
    Gromoll, D., Meyer, W.: Periodic geodesics on compact riemannian manifolds. J. of Diff. Geom.3, 493–510 (1969)Google Scholar
  10. 10.
    Klein, P.: Über die Kohomologie des freien Schleifenraumes. Bonner Math. Schriften 55. Bonn: Math. Institut 1972Google Scholar
  11. 11.
    Klingenberg, W.: The space of closed curves on the sphere. Topology7, 395–415 (1968)Google Scholar
  12. 12.
    Klingenberg, W.: The space of closed curves on a projective space. Quart. J. Math. Oxford Ser. 20 No. 77, 11–31 (1969)Google Scholar
  13. 13.
    Klingenberg, W.: Lectures on closed geodesics. Preprint Bonn 1975Google Scholar
  14. 14.
    Loos, O.: Symmetric spaces II. New York: Benjamin 1969Google Scholar
  15. 15.
    Švarc, A.S.: Homology of the space of closed curves. Trudy Moscow. Mat. Obsc.9, 3–44 (1960)Google Scholar
  16. 16.
    Vigué, M., Sullivan, D.: The homology theory of the closed geodesic problem. Preprint Orsay and bures-sur-Yvette, 1975. To appear in J. of Diff. Geom.Google Scholar
  17. 17.
    Wolf, J.A.: Spaces of constant curvature. New York-Toronto-London: McGraw-Hill 1967Google Scholar
  18. 18.
    Ziller, W.: Geschlossene Geodätische auf global symmetrischen und homogenen Räumen. Dissertation, Bonn 1975Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Wolfgang Ziller
    • 1
  1. 1.Mathematisches Institut der Universität BonnBonn

Personalised recommendations