Advertisement

Inventiones mathematicae

, Volume 35, Issue 1, pp 111–129 | Cite as

Duality in the flat cohomology of curves

  • M. Artin
  • J. S. Milne
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, M., Grothendieck, A., Verdier, J.-L.: Cohomologie étale des schémas II. Lecture Notes in Math.270. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  2. 2.
    Artin, M. (Notes by Wyman, B.): Autoduality of the Jacobian. Bowdoin College 1967 (mimeographed notes)Google Scholar
  3. 3.
    Breen, L.: In preparationGoogle Scholar
  4. 4.
    Cartier, P.: Une nouvelle opération sur les formes différentielles. C. R. Acad. Sci. Paris244, 426–428 (1957)Google Scholar
  5. 4.
    —: Calcul differential sur les variétés algébriques en caractéristique non nulle.loc. cit.245, 1109–1111 (1957)Google Scholar
  6. 5.
    Demazure, M., Gabriel, P.: Groupes algébriques, Tome 1. Amsterdam: North-Holland 1970Google Scholar
  7. 6.
    Grothendieck, A.: Revêtements étales et group fondamental. Lecture Notes in Math.224. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  8. 7.
    Grothendieck, A.: Le groupe de Brauer III, appendix. Dix exposés sur la cohomologie des schémas. Amsterdam: North-Holland 1968Google Scholar
  9. 8.
    Hoobler, R.: Cohomology of purely inseparable Galois coverings. J. Reine u. Angew. Math.266, 183–199 (1974)Google Scholar
  10. 9.
    Katz, N.: Nilpotent connections and the monodromy theorem: applications of a result of Turritin. Publ. Math. I.H.E.S.39, 175–232 (1971)Google Scholar
  11. 10.
    Katz, N.: Groupes de Monodromie en géométrie algébrique, exposé XVII. Lecture Notes in Math.340. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  12. 11.
    Lipman, J.: Rational singularities... Publ. Math. I.H.E.S.36, 195–279 (1969)Google Scholar
  13. 12.
    Mazur, B., Messing, W.: Universal extensions and one dimensional crystalline cohomology. Lecture Notes in Math.370. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  14. 13.
    Messing, W.: The crystals associated to Barsotti-Tate groups. Lecture Notes in Math.264. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  15. 14.
    Milne, J.S.: Duality in the flat cohomology of a surface. Ann. Sci. École Norm. Sup. (to appear)Google Scholar
  16. 15.
    Mumford, D.: Abelian varieties. Bombay: Oxford Press 1970Google Scholar
  17. 16.
    Raynaud, M.: Spécialisation du functeur de Picard. Publ. Math. I.H.E.S.38, 27–76 (1970)Google Scholar
  18. 17.
    Serre, J.-P.: Groupes proalgébriques. Publ. Math. I.H.E.S. 7 (1960)Google Scholar
  19. 18.
    Seshadri, C.: L'opération de Cartier. Applications, Séminaire Chevalley, Varietés de Picard, Exposé 6, École Norm. Sup., Paris, 1958-59Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • M. Artin
    • 1
  • J. S. Milne
    • 2
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.University of MichiganAnn ArborUSA

Personalised recommendations